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ON THE PARAMETIC INTEREST OF THE BLACK-SCHOLES
EQUATION
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ABSTRACT. We have discovered some parametics A in the Black-Scholes

equation which depend on the interest rate r and the Volatility o and later

is named the parametic interest. On studying the parametic interest A, we

found that such A gives the sufficient condition for the existence of solutions
“of the Black-Scholes equation which is either weak or strong solutions.
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1. Introduction

In financial mathematics, the famous equation named the Black-Scholes equa-
tion plays an important role in solving the option price of stocks. The Black-
Scholes equation is given by

0 o} o?s? 02
au(s, t)+ rsau(s, t) + —u(s,t) —ru(s,t) =0 (1)

2 QOs?
with the terminal condition

u(s,T) = (s —p)* (2)
for 0 <t < T where u(s,t) is the option price at time ¢, r is the interest rate,
s is the price of stock at time ¢, o is the volatility of stock and p is the strike
price.

They obtain the solution u(s,t) of (1) that satisfies (2) of the form

In (2) + (r + 30°)(T - ¢)

u(s,t) =s® I o
n(2 r— L2 —
. pe_r(T_t)CP 1 (1)) + ( 2 )(T t) (3)
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where ®(z / -5 dy, see [1, p. 91].
v [ ]

In this work, we study the solution of (1) in the other form. By changing the
variable R =1Ins, s > 1. Then (1) is transformed to

oV o?0%V o2, 0V
— —— )= -1V = 4
at+2aR2+(‘" Tar V=0 4)
where V = V(R, t) = u(s, t).
The method of separation of variable and the Laplace transform are applied
to solve for the solutions of (4). We obtained the such solution in the form
u(s, t, ) = eMLTO(EY) (5)
where A is the parametic interest, £L7°°(£%) is the Inverse Laplace transform and
—(30% ~ 2r) £ /(02 + 2r)2 — 802
o
Next, we consider a as the following cases.

(i) Suppose @ = m where m is some nonnegative integer, we obtained the
solution in (5) as

u(s, t, A) = e*5(™ (s) (7)
where
(m? +3m +2) ;2
8
; ®
is the parametic interest and 5(’”)(3) is the Dirac-delta dlstrlbutlon with m-
denvatwe and 6(®' = 6.

- (ii) Suppose « is a negative real number, that is o < 0, we obtamed the
solution in (5) as

A=Ar,0)=(m+2)r—

eAtS—a 1
4 Ny 5T
where I'(—a) is Gamma function of —c.
In particular, if & = —n for some positive numbers n, then (9) reduces to
e’“‘s
A 1
where
2 3 2
/\=)\(r,a):—%n2+(%—7‘)n+2r—02. (11)

If we compare the solution in (3) with the solution of (5), we see that the solution
in (5) has given more details about the type of solutions which are both weak
and strong solutions. The solution (7) is the weak solution of the Dirac-delta
distribution and the solution of (9) and (10) are strong solutions or classical
solution. We see that the solution in (7) which is the option price u(s,t, \)
will not appear in the real world subject to the condition (8) of the parametic
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interest. The solution in (9) or (10) is the strong solution happen in the real
world subject to the parametic interest of (11). But the solution u(s, ¢, A) in (5)
contains both weak solution of the form (7) and the strong solution of the form
(9). Thus we can say that the solution (5) is much more general than (3).

2. Preliminaries

Before reaching the main results, the following definitions and the basic con-
cepts are needed.

Definition 1. Given f is piecewise continuous on the interval 0 < t < A for
any positive A and if there exists the real constant K, a and M such that
|f(#)] < Ke? for t > M. Then the Laplace transform of f(t), denoted by £f(¢)
is defined by

L£(t) = F(§) = / et f(t)dt. (12)
, 0
Lemma 1. Let F(§) be the Laplace transform of f(t). Then
1 ct+ico
FO) =55 | PO (13)

is the Inverse Laplace transform of F(£), denoted by

c+ico
e1F(E) = £(2) 1f F(€)eftde

i oo
Proof. See [2, p. 216]. O
Lemma 2.
(i) £o(t) =1

(ii) £6PM)(t) = ¢* where 6%) is the Dirac-delta distribution with k-derivative
and £ >0

(iii) £(¢P) = %ﬁl—l)— forp> —1and £ > 0. If p is a positive number n, then
| !
£(t") = 5’?*‘“1’ £€>0
(iv) L[5 f()] = (=) FM)(€)
(v) L[fM(0)] = €5 F(€)
Proof. See [2, p. 227-228]. O

3. Main results
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Theorem 1. Given the Black-Scholes equatz'on

0 0 s? 92
u(s t)—l—rs u(s t)+ 5 3

where u(s,t) is the option price at time t with 0 <t <T, s is the price of stock
at time t, v s the interest rate and o is the volatility of stock. Then we obtain

u(s, t,\) = eMg1(£?) (15)

—u(s,t) —ru(s,t) =0 (14)

as the solution of (14) where \ is some parameters, £71(£%) is the Inverse
Laplace transform of £ with

_ (2r —30%) + /(02 +2r)? — 802\
B 202 )

In particular, if o0 = m where m is nonnegative integer, then (15) become
u(s, t,\) = eM6(™(s), 8™ is the Dirac-delta distribution with m-derivatives

2
and 5 = § and A = (m+2)r — (m” + 3m +2)
number, that is & < 0, then (15) become

(16)

o? by (16). If o is negative real

e)\ts—a 1
tA) = ——
u(s, t, A) = (o) (17)
where I'(—a) is the Gamma function. -
In particular, if o is negative integer and suppose o = —n, then (17) reduces
to
€>‘t8n 1 e)\tsn-—-l
£, A =
st = e = mo) (18)
2 2
and A = —%—nz + (3—(27— —r)n+2r —a? by (16).
Proof. By changing the variable R =1Ins, s > 1. Then (14) is transformed to
0 o? 92 0%, 0 '
V(R t)+ — 5 IR? —V(R,t)+ (r - “2“)5§V(R’ t)y—rV(R,t)=0
(19)
where V(R,t) = u(s,t). By method of separation of variable, let V(R,t) =
%4 BV %
X(R)U(t) , ('3 = X(R)U’(t), = X'(R)U(t) and g—R—z-» = X"(R)U(t). Sub-

stitute into (19)
2

X(R)U'(t) + U—;-X”(R)U(t) + (r- 7

[\

or
U'(t) | o’ X"(R) 02) X'(R)
U@t) 2 X(R)
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Let
U@  o*X"(R) a?, X'(R) _
ut) 2 X(R) (r— 7) X(R) =

where A is a parameter.

/
Now ((]]((tt)) = X, thus U(t) = ce*t. For simplicity, choose ¢ = 1, thus U(t) =
er. Now 2 X/'(R) 2 X'(R)
o o
g~ R Dufnlih S A A=0
rx®m U Im T
or

a>X"(R) + (2r — ®)X'(R) — (2r — 20)X(R) = 0.
Put R =Ins and let X(R) = X(Ins) = Y(s). Then

X'(R) = sd};f) and X"(R) = 2 dZS) + sdzgg).
Thus :
2
o? [s2d d};gs) + sdl;is)]: + (2r — <72)39-l-%-§fz —(2r—2\)Y(s) =0
| o2s2Y""(s) + 2rsY’(s) — (2r — 2\)Y (s) = 0. (20)

The equation (20) is the Euler’s equation of order 2. Now take the Laplace
transform to (20) and use (iv) and (v) of Lemma 2, see [3].
2

d d
o €Y (O] + (-1)2r—[EY ()] - (2r — 20)Y () = 0
or
o2 EY"(€) + (40% = 2r)EY" (&) + (20 — 4r +2))Y(€) = 0.
That is the Euler’s equation.
Let Y (&) = £€* and substitute into such equation,

[a(a — 1) + (40 — 2r)a + (20% — 4r + 20)]E¥ = 0.

Thus ‘
ola(a—1)+ (46% = 2r)a+ (20% —4r +2X) =0
or |
o?a® + (30 — 2r)a+ (207 — 4r + 2)) = 0. (21)
Thus |

(2r — 30?) £ /(0% + 2r)? — 802\

a= 53 :
We obtain the solution Y (§) = £ or Y(s) = £71Y (£) = £71(¢2).
Now V(R,t) = X(R)U(t) or u(s,t) = Y(s)U(t) = eML1(£%). Thus the

option price

(22)

u(s,t, ) = eMg1(g9). | (23)



928 Amnuay Kananthai

: . . > (o2 +2r)%
Now we consider, from (22), the case « is real root. That is A < oz in
(22). |
(i) If @ < 0, then from (23) and (iii) of Lemma 2, we obtain

e)\ts—a—l

u(s, t,A) = —F(——a)

(24)

which is a strong or classical solution.
(ii) If @ > 0 and « is some integer m. By applying Lemma 2, (i) and (ii) to
(22), we obtain

u(s, t, \) = e* 5™ (s) (25)
where §(™)(s) is the Dirac-delta distribution of m-derivatives and 6() = §, thus
for & = m in (21), we obtain

24+3m+2
_m *'2”1*' Jo2, m=0,1,2,.... (26)
We see that the solution u(s, t,A) in (25) and the value of X in (26) is a weak
solution. We can not compute in classical solution or ordinary solution. Thus
the option price u(s,t, A) in (25) will not appear subject to the condition of A

A=(m+2)r

in (26). O
Corollary 1. The solution u(s,t,\) in (17) of the Theorem reduces to
e/\tsn—l
tA) = — 27
for a = —n where n is some positive integer and
2 3 2
A= —%—nQ-{-(% — ) +2r — o2, (28)

Proof. Put o = —n in (23), we obtain

e)\tsn—l eAtsn~1

Us b A = Ty = o

and from (21) with a = —n, we also obtain the parametic interest

2 3 2
)\=—g2—n2+(—g——r)n+2r—02.

O

4. Conclussion

| | | ,
The solution u(s,t, A) = e*§™)(s) where A = (m + 2)r — (m” + 3m + 2)02

for some nonnegative integer m is the weak solution of Delta-distribution. The
option price u(s,t, A) disappear subject to the condition of such A.
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eAt n—1 0.2 30.2

The solution u(s,t,\) = —(R—_T)' where A\ = —Enz + (? —7)n +2r — o®
for some positive integer n is the strong solution or classical solution of the price
of stock s.

rt 50

0!

This means the option price u(s, t, \) is equal to the value of 1 dollar put in the
Bank with the interest rate r at the time t. If n = 2, then A = 0, we obtained

0t (2—1
u(s, t,0) =

— ert‘

In particolar if n = 1, then A = r. Thus we obtained u(s,t,r) =

€S

(2-1)!
price s of the stock at any time ¢.

= s. This means the option price u(s,t, A) is equal to the
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