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ON THE GENERALIZED SOR-LIKE METHODS FOR SADDLE
POINT PROBLEMS

XINLONG FENG* AND LONG SHAO

ABSTRACT. In this paper, the generalized SOR-like methods are presented
for solving the saddle point problems. Based on the SOR-like methods, we
introduce the uncertain parameters and the preconditioned matrixes in the
splitting form of the coefficient matrix. The necessary and sufficient condi-
tions for guaranteeing its convergence are derived by giving the restrictions
imposed on the parameters. Finally, numerical experiments show that this
methods are more effective by choosing the proper values of parameters.
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1. Introduction

The abstract saddle point problem is of the form

(ar 0)(3)=(0): ®

where A € R™*™ is a symmetric and positive definite matrix, B € R™*"(m > n)
is a matrix of full column rank, and BT is the transpose of matrix B, b € R™
and ¢ € R™ are two given vectors. This class of problems appears in many
different fields of scientific computing and engineering applications, such as the
constrained optimization [1-6], the finite element method or the finite volume
method for solving the Navier-Stokes equations [7-9], the hybrid finite element
approximations of second-order elliptic problems and elasticity problems, and the
constrained least squares problems and the generalized least squares problems,
etc. There have been lots of iterative methods for solving the augmented system
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(1). Among them, the preconditioned iterative methods were provided firstly by
Santos and co-works. Several variants of the SOR method and preconditioned
conjugate gradient methods were proposed for solving general augmented sys-
tem by Yuan and co-workers. The preconditioned MINRES method, the QMR
method, the preconditioned GMRES method, the SOR-like methods were inves-
tigated respectively for solving the augmented system arising from finite element
approximations to the Stokes equations. Particularly, the SOR-like method is
a simple non-stationary iterative method with no preconditioner. Recently, an
iterative method with variable relaxation parameters, the generalized successive
overrelaxation methods, the generalized AOR method, the parameterized inexact
Uzawa methods, the fast Uzawa algorithms and the generalized symmetric SOR
method were presented by some scholars for sloving the augmented system and
the generalized saddle point problems, respectively [1,2,5-7,11-18]. Moreover,
Feng and co-workers applied the modified homotopy perturbation method to the
saddle point problem (1) in [10].

In this paper, we focus on the generalized SOR-like methods for solving the
augmented systems. Based on the SOR-like methods, we introduce the uncertain
parameters and the preconditioned matrixes in the splitting form of the coeffi-
cient matrix. According to the sign of all eigenvalues p of Q“'BTA~!B, two
special cases are considered for solving problem (1). The necessary and sufficient
conditions for guaranteeing its convergence are derived by giving the restrictions
imposed on the parameters. Finally, the promising characteristic of the proposed
algorithms are illustrated by two numerical examples. o

The outline of this paper is as follows. In Section 2, the generalized SOR-like
methods with the uncertain parameters are given concretely. Moreover, The nec-
essary and sufficient conditions for guaranteeing its convergence are derived in
detail. In Section 3, we make some special choices for ) and give numerical ex-
periments for our algorithms. The numerical experiments show that our methods
work well for problem (1) arising from the real problems.

2. The generalized SOR-like method
For the coefficient matrix of the augmented system (1), we consider the fol-

lowing splitting:

(;} §)=D—L—U | )

where

o=(4 ) o=( e &) o-(E )

Here Q € R™*™" is a given matrix and needs to be non-singular and ”easy” to
invert, h # 0, a, 3 are three real parameters and satisfy h = o + (.



On the generalized SOR-like methods for saddle point problems 665

Denote (z®),y(*))T be the kth approximation of solution (1), we obtain the
generalized SOR-like methods as follows: :

p(F+1)

(D—rL)( " e )zw( Z)+[(1—w)D+(w—r)L+wU](:;((:)) ) @)

where r and w are two relaxation parameters. When r = w,av =0 and 8 = 1,
we get the well-known SOR-like methods that firstly proposed by Gloub and co-
works [12]. When h = 1, we get the generalized AOR method that provided by
Shao and co-works [15].

From (3), we have

(D_TL):<61 h%g)"’(—%T a%g):(rgT (h—Oar)Q>' Q

Obviously, det(D — rL) = det(A) det((h — ar)Q) = (h — ar)™ det(A4) det(Q) # 0
if and only if h — ar # 0. Hence,

—1
-rot=( g 1% ) ©)

h—ar

exists if and only if h — ar # 0. From (3) and (5), we obtain the generalized
SOR-like iteration matrix as follows:

M _ (1—-w)lp —~wA™'B
w,rh = wh(C;rlr) Q_lBT In + wr Q—lBTA—lB

h—or

(7)

where I, € R™*™ and I, € R™*" are the m-by-m and the n-by-n identity
matrices, respectively. If w = 0, then we have

Mo,r’h = dia/g(Im, In). ' (8)

So the generalized SOR-like method is divergent for all the values of parameters
T and h. In the following, we assume that w # 0. Suppose that A is an eigenvalue
of M, »n and whose eigenvector is (u,v)”, then we have

M, 1 (u,v)T = Mu,v)T. (9)

Hence, it follows from (9) that | |
1-w—-Nu=wA"'By, (r—w-rA)Q 'BTu=0M)\-1)h-ar)v. (10)
Next we study the convergence of generalized SOR-like method for problem (1).

Lemma 1. Suppose that A is an eigenvalue of M, .1, then XA # 1.

Proof. If A =1 and whose eigenvector is (u,v)?, then from (10) we have
u=—A"1Bv, Q 'BTu =0, (11)
since w # 0. So we obtain Q '!BTA"!Bv = 0. By the nonsingularity of

Q 'BTA™'B, we get v = 0 and u = 0. This is contrary to the definition of
eigenvector, thus \ # 1. ‘ ' O
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Lemma 2. Assume that r = 1, then the algebraic multiplicity of the eigenvalue
A=1—-w is at least m for matrix My, rn; if 7 # 1 and m > n, then the algebraic
multiplicity of the eigenvalue A = 1 — w is at least m — n for matriz M, » n; if
r# 1 and m =n, then A =1 — w is not an eigenvalue of M, r p.

Proof. If r = 1, then we can obtain the algebraic multiplicity of the eigenvalue
A =1—wis atleast m from (7). If r # 1, A = 1 —w is an eigenvalue of M, , 5, and
whose eigenvector is (u,v)T, then we have A™'Bv = 0, and Q7 1BTu = ﬁl_To‘r"-v.
Since B is a matrix of full column rank, we get v =0 and Q~'BTu = 0.
Furthermore, if m > n, then the system QBT u = 0 exists m — n nonzero
solutions. Hence the algebraic multiplicity of the eigenvalue A = 1 — w is at least
m —n. If m = n, then the system @ 'BTwu = 0 only exists zero solution. Thus

A =1 — w is not an eigenvalue of M, , 4. g

From Lemma 1 and Lemma 2, it is clear that if m > n, ﬁhen A=1—-wisan
eigenvalue of M, r p; if A # 1—w is an eigenvalue of M, , 5, and whose eigenvector
is (u,v)T, then v # 0.

Theorem 1. Suppose that p is an eigenvalue of Q 'BTA~'B. If X satisfies
A-1D(A-w=AN(h—ar)=wu(r —w—rA), o (12)

then A is an eigenvalue of M, rn. Conversely, if X is an eigenvalue of M, rp
such that A # 1 and A # 1 —w and p satisfies (12), then p is an eigenvalue of
Q 'BTA'B.

Proof. According to (10), we have
wr—w—rAQ 'BTA 'Bu=(\-1)(1-w—XA)(h —ar)y,

since A # 1 — w. Assume that p is an eigenvalue of Q"' BT A~!B. Then we get
(12). By using Lemma 1 and Lemma 2, we have w(r —w — 'r/\) # 0. Reversing
the process, we can prove our second assertion. O

Corollary 1. Suppose that p(M,, 1) is the spectral radius of M, »pn and m > n,
then p(Myrp) > |1 — wl.

For our next result, we first quote the following useful result [16]:

Lemma 3.[Young] Both roots of the real quadratic. equation 2 — bz +c= 0 are
less than one in modulus if and only if |c| < 1 and |b| < 1+ c.

Theorem 2. Suppose that B has full rank and A is symmetric and positive
definite. Assume that all eigenvalues p of Q"' BT A='B are real. Then, if p <0,
the generalized SOR-like method is convergent if and only if

rT—w 1 2r —w 4 — 2w
> — d < — . 13
h—ay  pn o h—ar Whn (13)

h—ar >0,

where 1, is the smallest eigenvalue of Q~'BTA~!B.
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Proof. It follows from Theorem 1 that

RV Gt A
AT —(2 w+h—ar)/\+(1 w+ —— )
By Lemma 3, |A| < 1 if and only if
Wwr w(r —w)u
— — 14
|2 w+h_a|<2 + h oy (14)
w(r —w)p
- 1. 15
1w = < (15)
From (14) and (15), we have
P ) | P D GlndC) L BN
h —ay h —ay
2 o —
I T P A ¢ ) ) (16)
h —ar h—ar N
If h — ary > 0, then (16) holds for all x < 0. So we have
(r—wp<h—ar, (2-w)(h-ar)>-wr- g)u- (17)
Hence the following inequalities hold
- 1 2r — 4 -2
h—ar >0, 7Y S 2 and 2% < w’ (18)
h—ay pu h—ar wi
for all eigenvalues p of Q7 !BT A~!B. | O

Theorem 3. Suppose that B has full rank and A is symmetric and positive
definite. Assume that all eigenvalues p of Q"'BT AB are real. Then, if u > 0,
the generalized SOR-like method is convergent if and only if

T—w 1 2r-—w 4 - 2w

< — d
h—aoy e ar C wly

h—ar <0,

where p1 is the first eigenvalue of Q" 'BT A~1B.

Proof. From (14)-(16), if h — ary < 0, then (16) holds for all 4z > 0. So we have

(r—w)u>h-—ar, 2-w)(h—ar) < —w(r - g)u (20)

Hence the following inequalities hold

rT—w 1 2r —w 4 — 2w
< — and
h—aoy p h—ar wi

for all eigenvalues ;i of Q" 'BTA~!B. ' O

h—ar <0,




668 Xinlong Feng and Long Shao

Corollary 2. Suppose that B has full rank and A is symmetric and positive
definite. Assume that all eigenvalues 1 of Q 'BTA™1B are real. Then, the
generalized SOR-like method is convergent for all w =1 and oo = 0 such that

4
< .
1+ \/1+ 4p/|h]

where p is the spectral radius of Q"'BT A1 B and |h| is the absolute value of h.

0<w (22)

Proof. Let r = w and a = 0 in (18) and (21) respectively, then we have

4 —
0<w<—(—2ﬂﬁ, (23)
Whn
forall h > 0 and ;4 < 0. And
0<w<_(_.4iw)_h, (24)
Wi

for all h <0 and p.> 0.
~ From (23), we have u,w? — 2hw + 4h > 0. Hence we obtain

4
14+ /1 —4p,/h’

On the other hand, from (24) we have u;w? — 2hw + 4h < 0. Hence we obtain

4
1+ +/1—4pu1/h’

In terms of (25) and (26), we obtain the following result:

4
14+ +/1+4p/|h|

O<w< where p, < 0,h > 0. (25)

I<w<

where p1 > 0,h < 0. (26)

O<w< < 2, where p > 0. (27)

g

It is noticed that the condition of real eigenvalues of Q=BT A~!B in Theorem
2 and Theorem 3 are reasonable. For example, if @) is positive definite, then all
the eigenvalues of Q~'BT A~1B are real and positive; if Q is negative definite,
then all the eigenvalues of Q ! BT A~! B are real and negative.

Form (27), we can see that lim ——2—— = 2. It means that 0 < w < 2

|h|—oo 144/1+4p/|R]

holds. Moreover, we have ]%}To H\/T—j-—él__p—/lhl = 0. It means that the upper bound

of w decrease as |h| decrease. Namely, the convergence region of this method
become narrow as h decrease. It is pointed out that when h = 1, o = 0 and
all eigenvalues u of Q7'BT A=! B are real and positive, Gloub and co-works [12]

obtained the following results 0 < w < 3 s \/‘%I_W'

3. Numerical experiments

In this section, we illustrate the effectiveness of the generalized SOR-like
methods by using two numerical examples. Our first example is a system of
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purely algebraic equations [13]. We consider the matrices A = (a;j)nxn and
B = (bij)nxm(n > m) in problem (1) as follows

j5 7“=.7+n~m7

a;j; = 1, li —Jj] =1, bij = 0, otherwise.

i+1, 1=3

0, otherwise; {
The right-hand side vectors b and g are taken such that the exact solutions z and
y are both vectors with all components being 1.

Now, we use the special choices of @ for solving problem (1) in the following:

Choice (1): @ = BT B. In this case, the eigenvalues of (BT B)"'!BTA~!B are
non-negative. Choice (2): @ = BT A~'B. Inthis case, Q *BTA~!B = I. Choice
(3): @ = I € R"*", In this case, the eigenvalues of BT A1 B are non-negative.
Choice (4): @ = A € R™*™ and has the same structure with A € R™*™. In this
case, the eigenvalues of A~! BT A~! B are non-negative.

For simplicity, we only take n=50 and m=40 in above choices. The stopping

, k
criterion is H:ﬁ;i“;’ < 1076 where r(*) = ( 2 ) — ( ;T }g ) < :;((k; )> and
the maximum number of iterations is 10%. Here, we take 7 = w and the initial
guess is the vector with all zeros. '

All pictures report the values of relaxation parameter w versus the number of
iterations. It is pointed out that the circle line, the triangle (up) line, the solid
line and the dashdot line denote the curve of iteration steps of cases h = 1074,
1073, 1072 and 107! in the left figures of all pictures, respectively. The dashed
line, the point line, the dotted line and the diamond line denote the curve of
iteration steps of cases h = 1, 10, 10? and 102 in the right figures of all pictures,
respectively. When a = 0, 0.25h, 0.5k and 0.75h, Figure 1-4 refer to the number
of iterations for the different values of A in different choices (1)-(4), respectively.

It is obvious that the iteration steps decrease in the beginning, and then the
iteration steps increase as w increase in the convergence region of the GSOR-like
method. Moreover, the convergence region of the GSOR-like method become
wide as h increase. From the numerical results, we can see that the trend derived
from all pictures is almost monotone. We report the number of iterations (de-
noted by IT) and the optimum relaxation parameter (denoted by w,,;) in Tables
1-4, for different choices of @ and a. It is clear that the optimum relaxation
parameter of the GSOR-like method increase as h increase in the different cases
of a. When h = 1073, 1072 and 10~!, the number of iterations of GSOR-like
method are less then the number of iterations of SOR-like method in Choice (1).
When h = 1071, ‘the number of iterations of GSOR-like method are less then
the number of iterations of SOR-like method in Choice (4). When h = 1, the
number of iterations of SOR-like method are less then the number of iterations
of GSOR-like method in Choices (2) and (3).

Our second example is the augmented linear system in [17], we consider A =
(aij)nxn and B = (b;j)nxm(n > m) in problem (1) as follows
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Table 1. IT and wopt for Choice (1).

o A J107%]10°3]10°% | 101 1 10 104 | 10
0 wopt | 0.06 | 0.2 | 0.55 | 1.21 [ 1.82] 1.97 | 1.98 | 1.99
IT | 509 | 132 33 47 | 336 | 3117 | 10% | 10T
025 | Wopt | 006 ] 0.19 ] 0.52 | 1.10 [ 172 ] 1.96 | 1.97 [ 1.98
IT | 512 | 140 37 36 | 202 [ 1605 | 10% | 10
0.5h | Wopt [ 0.06 [ 0.19 [ 049 [ 0.99 | 1.51 [ 1.81 | 1.93 [ 1.98
IT | 510 | 139 40 25 99 | 321 | 1113 | 3719
0.75h | wopt | 0.06 | 0.18 [ 0.46 | 0.85 [1.20 [ 1.31 [ 1.33 [ 1.33
IT | 513 | 147 44 15 47 79 | 112 [ 1151

Table 2. IT and wept for Choice (2).
o h [1074]103]10°2]10° 1] 1 10 | 104 [ 10°
0 wopt | 0.01 | 0.06 | 0.17 | 0.51 | 1.00 | 1.69 | 1.95 | 1.99
IT | 2883 ] 508 | 138 38 2 71 | 637 | 6259
0.25h | Wept | 0-01 ].0.06 | 0.17 [ 0.49 ] 0.96 | 1.57 | 1.92 ] 1.99
IT | 2649 | 497 | 156 40 8 45 | 333 | 3145
wopt | 0.01 | 0.06 [ 0.17 | 0.47 [ 0.92 | 1.37 | 1.74 | 1.91

0.5k 1T 2705 | 494 145 42 11 25 91 289
0.75h | Wopt 001§ 006 | 0.17 | 043 [ 084 | 1.12 ] 1.30| 1.33
| IT 2737 | 483 151 49 15 13 ] 21 26
A= IRT+TRI 0 c R X2
0 IRT+TRI | ’
5= (18] ) eors
and T = 'Elg - tridiag(—1,2,—1) € RP*P F = % - tridiag(—1,1,0) € RP*P, where
Q) denotes the Kronecker product symbol, h = pﬁ is the discretization mesh

size and S = tridiag(a, b, c) is a tridiagonal matrix with S;; = b, S;—1; = a

and S; ;11 = c for appropriate i. For this example, we set m = 2p? and n = p®.

Hence, the total number of variables is m+n = 3p?. In order to show differences,
we choose the same choices of 2 and take the same stopping criterion in the first
example for numerical experiments. Here, we only consider p = 9.

Table 3. IT and wopt for Choice (3).

o R J1074J10 2102107t ] 1 10 | 10° | 109
wopt | 0.003 ] 0.01 [ 0.03 [ 0.10 [ 0.32]0.84 | 1.59 | 1.94
IT 10% | 3614 | 1110 | 303 | 224 | 767 | 4047 | 102

0.25h | Wopt | 0-003 | 0.01 | 0.03 | 0.10 | 0.31 [0.78 [ 1.46 | 1.89
’ IT | 107 | 3596 | 1111 | 301 | 216 | 666 | 2797 | 107

wopt | 0.003] 0.01 [ 0.03 | 0.10 [ 0.30 | 0.71 | 1.27 | 1.69
IT 107 | 3584 | 1112 | 304 | 207 | 588 | 1848 | 5903

075} | @opt | 0003 ] 0.01 [ 0.03 | 0.10 | 0.28 [ 0.65 | 1.07 | 1.28
IT 10% | 3611 | 1115 | 305 | 208 | 512 | 1187 | 2009

0.5h
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Table 4. IT and wept for Choice (4).
o h [107*]102]107% 10" | 1 10 | 10 | 10°
wopt | 0.02 | 0.06 | 020 | 0.57 | 1.27 | 1.84 | 1.98 | 1.99
IT 1739 | 525 135 33 130 | 909 | 8487 [ 107
0.95% | Wopt 002 | 0.06 | 0.20 | 0.54 | 1.16 | 1.75 | 1.96 | 1.98
' IT 1729 | 523 136 36 103 | 536 | 4370 | 10*
0.5h | Wopt | 0.02 | 0.06 | 0.19 | 0.51 | 1.03 | 1.54 | 1.82 | 1.94
IT 1721 | 527 143 39 80 248 | 826 | 2595
wopt | 0.02 | 0.06 | 0.19 | 048 | 0.90 | 1.22 | 1.31 | 1.33
IT 1742 | 528 145 44 63 116 | 221 313

0.75h

Table 5. IT and wept for different choice as o = 0.

Q h 10-¥ 1073102101 1 10 | 10% | 10°
BTRH wopt | 0.09 | 0.28 | 0.74 | 1.47 [ 1.91 [ 1.95 [ 1.97 | 1.99
IT 329 88 44 165 | 1271 | 10% | 10% | 107

Wopt | 0.01 | 0.06 | 0.18 | 0.48 [ 1.00 [ 1.60 | 1.94 | 1.99
IT | 2530 [ 508 | 154 37 2 52 | 391 | 3814
wopt | 0.001 | 0.06 | 0.18 | 0.52 [ 1.15 [ 1.79 | 1.97 | 1.98
IT 10% 554 158 41 43 | 263 | 2448 | 10¢
A wopt | 0.13 [ 0.39 [ 094 [ 1.66 | 1.95 [ 1.96 | 1.97 | 1.99
IT 219 58 46 194 | 1848 | 10* | 10* | 10%

We show the number of iterations as w increases in Figure 5 and report the
number of iterations and the optimum relaxation parameter in Table 5, for dif-
ferent choices of @ and a = 0. It is clear that the optimum relaxation parameter
of the GSOR-like method increases as h increases. When A = 1074, 1073, 1072
and 107!, the number of iterations of GSOR-like method are less then the num-
ber of iterations of SOR-like method in Choices (1) and (4). When h = 1, the
number of iterations of SOR-like method are less then the number of 1terat10ns
of GSOR-like method in Choices (2) and (3).

From a computational point of view, the preconditioned matrixes (1) and (4)
are the best choices for the GSOR-like methods. The preconditioned matrix (2)
is the best choice for the SOR-like methods. It is pointed out that if it is not
easy to invert A, we can apply the inexact Uzawa method instead of A~! for our
algorithms. Especially, the authors proposed the nonlinear inexact Uzawa with
mixed iteration method in [13]. Let A and C be two positive definite matrices,
which are assumed to be the preconditioners of the matrices A and C = BTA~!B,
respectively. In example 1, we use the above method instead of A~! and choose
the Jacobi preconditioner and the identity matrix to be the preconditioner for A
and the approximative Schur complement BT A~1B, respectively. In example 2,
we take the multigrid preconditioner to be the preconditioner A and the identity
matrix to be the preconditioner C' for the Schur complement C = BTA!B.
The approximation ¥ 4(¢) is taken to be fl‘lqb for any ¢ in the nonlinear inexact
Uzawa with mixed iteration method. And the approximation ¥y (g;) is generated
by two conjugate gradient iterations for solving H¢) = gy = BT ;41 — q, where
H = BT A~1B. Here, we shall not have a detailed discussion.
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FIGURE 3. When a = 0, 0.25h, 0.5h and 0.75h respectively, the
iteration steps as w increase in Choice (3).
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FIGURE 5. When a = 0, the iteration steps as w increase in
Choices (1)-(4) respectively.
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In a word, the GSOR-like method will converge faster than the SOR-like

method by the choice of proper parameter values. Moveover, the convergence
region of the GSOR-like method become wider as the parameter values increase.
The determination of optimum value of the parameters need further studies.
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