References
- Banks H and Kojima F, Boundary shape identification problems arising in thermal tomography Inverse Probl., 6, 897, 1990. https://doi.org/10.1088/0266-5611/6/6/003
- BECK J V, BLACKWELL B, ST. CLAIR C, Inverse Heat Conduction: Ill-Posed Problems Wiley-Interscience, New York, 1985.
- BRYAN K AND CAUDILL L, An inverse problem in thermal testing of materials SIAM J. Appl. Math., 56, 715, 1996. https://doi.org/10.1137/S0036139994277828
- CANNON J, The one-dimensional heat equation, Encyclopedia of Mathematics and Applications, Vol 23, Cambridge University Press, Cambridge, 1984.
- EVANS L C , Partial differential equations (Graduate studies in Mathematics, v. 19, American Mathematical Society, Providence, R.I.), 1998.
- GUTMAN S AND HA J, Identifiability of piecewise constant conductivity in a heat conduction process SIAM J. Control and Optimization, 46(2), 694-713, 2007. https://doi.org/10.1137/060657364
- GUTMAN S AND HA J, Parameter identifiability for heat conduction with a boundary input Math. Comp. in Simulation, 79, 2192-2210, 2009. https://doi.org/10.1016/j.matcom.2008.12.002
- NAKAGIRI S, Review of Japanese work of the last 10 years on identifiability in distributed parameter systems Inverse Problems 9-2 143-191, 1993.
- RAMM A , Multidimensional Inverse Scattering Problems, Longman, New York/Wiley, New York, 1992.
- RAMM A, Property C for ODE and applications to inverse problems, Operator Theory and its Applications, AMS, Fields Institute Comm., Providence, RI, 25, pp. 15-75, 2000.
- RAMM A, An inverse problem for the heat equation J. Math. Anal. Appl., 264(2), 691-697, 2001. https://doi.org/10.1006/jmaa.2001.7781
- RAMM A, An inverse problem for the heat equation II, Appl. Anal. , 81(4), 929-937,2002 https://doi.org/10.1080/0003681021000004519
- RAMM A, Inverse problem for parabolic equation, Australian J. Math. Anal. Appl., 2(2), 1-5, 2005.
- RAMM A , Inverse Problems, Springer, New York, 2005.
- OANG N AND RAMM A, An inverse problem for a heat equation with piecewise constant thermal conductivity J. Math. Phys., 50(6), 063512, 2009. https://doi.org/10.1063/1.3155788
- ORLOV Y AND BENTMAN J, Adaptive distributed parameter systems identification with enforceable identifiability conditions and reduced-order spatial differentiation IEEE Transactions on Automatic Control 45-2 203-216, 2000 https://doi.org/10.1109/9.839944
- PIERCE A, Unique identification of eigenvalues and coefficients in a parabolic problem, SIAM J. Control and Optimization 17-4 494-499, 1979.
- Press W H, Teukolsky S A, Vetterling W T, Flannery B P, Numerical Recepies in FOR-TRAN (2nd Ed.) (Cambridge University Press, Cambridge), 1992.