DOI QR코드

DOI QR Code

Modulation of MnSOD in Cancer: Epidemiological and Experimental Evidences

  • Kim, Ae-Kyong (School of Pharmacy, Catholic University of Daegu)
  • Received : 2010.05.04
  • Accepted : 2010.05.14
  • Published : 2010.06.01

Abstract

Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells.

Keywords

References

  1. Adachi, T., Pimentel, D.R., Heibeck, T., Hou, X., Lee, Y.J., Jiang, B., Ido, Y. and Cohen, R.A. (2004). S-Glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J. Biol. Chem., 279, 29857-29862. https://doi.org/10.1074/jbc.M313320200
  2. Ambrosone, C.B., Freudenheim, J.L., Thompson, P.A., Bowman, E., Vena, J.E., Marshall, J.R., Graham, S., Laughlin, R., Nemoto, T. and Shields, P.G. (1999). Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res., 59, 602-606.
  3. Asikainen, T.M., Raivio, K.O., Saksela, M. and Kinnula, V.L. (1998). Expression and developmental profile of antioxidant enzymes in human lung and liver. Am. J. Respir. Cell Mol. Biol., 19, 942-949. https://doi.org/10.1165/ajrcmb.19.6.3248
  4. Borgstahl, G.E., Parge, H.E., Hickey, M.J., Beyer, W.F., Jr., Hallewell, R.A. and Tainer, J.A. (1992). The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell, 71, 107-118. https://doi.org/10.1016/0092-8674(92)90270-M
  5. Borgstahl, G.E.O., Parge, H.E., Hickey, M.J., Johnson, M.J., Boissinot, M., Hallewell, R.A., Lepock, J.R., Cabelli, D.E. and Tainer, J.A. (1996). Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry (Mosc), 35, 4287-4297. https://doi.org/10.1021/bi951892w
  6. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. and Kirchner, T. (2005). Opinion: Migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat. Rev. Cancer, 5, 744-749. https://doi.org/10.1038/nrc1694
  7. Buettner, G.R. and Jurkiewicz, B.A. (1993). Ascorbate free radical as a marker of oxidative stress: An EPR study. Free Radic. Biol. Med., 14, 49-55. https://doi.org/10.1016/0891-5849(93)90508-R
  8. Buettner, G.R., Ng, C.F., Wang, M., Rodgers, V.G.J. and Schafer, F.Q. (2006). A new paradigm: Manganese superoxide dismutase influences the production of $H_2O_2$ in cells and thereby their biological state. Free Radic. Biol. Med., 41, 1338-1350. https://doi.org/10.1016/j.freeradbiomed.2006.07.015
  9. Cadenas, E. and Davies, K.J.A. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med., 29, 222-230. https://doi.org/10.1016/S0891-5849(00)00317-8
  10. Cai, Q., Shu, X.O., Wen, W., Cheng, J.R., Dai, Q., Gao, Y.T. and Zheng, W. (2004). Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: Results from the Shanghai Breast Cancer Study. Breast Cancer Res., 6, R647-655. https://doi.org/10.1186/bcr929
  11. Castellano, I., Cecere, F., De Vendittis, A., Cotugno, R., Chambery, A., Di Maro, A., Michniewicz, A., Parlato, G., Masullo, M., Avvedimento, E.V., De Vendittis, E. and Ruocco, M.R. (2009). Rat mitochondrial manganese superoxide dismutase: Amino acid positions involved in covalent modifications, activity, and heat stability. Biopolymers, 91, 1215-1226. https://doi.org/10.1002/bip.21208
  12. Cheng, T.C., Chen, S.T., Huang, C.S., Fu, Y.P., Yu, J.C., Cheng, C.W., Wu, P.E. and Shen, C.Y. (2005). Breast cancer risk associated with genotype polymorphism of the catechol estrogenmetabolizing genes: A multigenic study on cancer susceptibility. Int. J. Cancer, 113, 345-353. https://doi.org/10.1002/ijc.20630
  13. Choi, J.-Y., Neuhouser, M.L., Barnett, M., Hudson, M., Kristal, A.R., Thornquist, M., King, I.B., Goodman, G.E. and Ambrosone, C.B. (2007). Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers. Cancer Epidemiol. Biomarkers Prev., 16, 1115-1120. https://doi.org/10.1158/1055-9965.EPI-07-0040
  14. Chung, D.J., Wright, A.E. and Clerch, L.B. (1998). The 3' untranslated region of manganese superoxide dismutase RNA contains a translational enhancer element. Biochemistry (Mosc), 37, 16298-16306. https://doi.org/10.1021/bi980935g
  15. Church, S.L., Grant, J.W., Meese, E.U. and Trent, J.M. (1992). Sublocalization of the gene encoding manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid mapping. Genomics, 14, 823-825. https://doi.org/10.1016/S0888-7543(05)80202-2
  16. Clerch, L.B., Massaro, D. and Berkovich, A. (1998). Molecular mechanisms of antioxidant enzyme expression in lung during exposure to and recovery from hyperoxia. Am. J. Physiol. Lung Cell Mol. Physiol., 274, L313-319.
  17. Connor, K.M., Hempel, N., Nelson, K.K., Dabiri, G., Gamarra, A., Belarmino, J., Van De Water, L., Mian, B.M. and Melendez, J.A. (2007). Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res., 67, 10260-10267. https://doi.org/10.1158/0008-5472.CAN-07-1204
  18. Davis, C.A., Hearn, A.S., Fletcher, B., Bickford, J., Garcia, J.E., Leveque, V., Melendez, J.A., Silverman, D.N., Zucali, J., Agarwal, A. and Nick, H.S. (2004). Potent anti-tumor effects of an active site mutant of human manganese-superoxide dismutase: Evolutionary conservation of product inhibition. J. Biol. Chem., 279, 12769-12776. https://doi.org/10.1074/jbc.M310623200
  19. Davis, C.A., Monnier, J.M. and Nick, H.S. (2001). A coding region determinant of instability regulates levels of manganese superoxide dismutase mRNA. J. Biol. Chem., 276, 37317-37326. https://doi.org/10.1074/jbc.M104378200
  20. Dionisi, O., Galeotti, T., Terranova, T. and Azzi, A. (1975). Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim. Biophys. Acta, 403, 292-300. https://doi.org/10.1016/0005-2744(75)90059-5
  21. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev., 82, 47-95.
  22. Egan, K.M., Thompson, P.A., Titus-Ernstoff, L., Moore, J.H. and Ambrosone, C.B. (2003). MnSOD polymorphism and breast cancer in a population-based case-control study. Cancer Lett., 199, 27-33. https://doi.org/10.1016/S0304-3835(03)00349-5
  23. Eras-Erdogan, N., Akbas, E., Senli, H., Kul, S. and Colak, T. (2009). Relationship between polymorphism in the manganese superoxide dismutase gene and breast cancer. Mutat. Res., 680, 7-11. https://doi.org/10.1016/j.mrgentox.2009.08.006
  24. Ford, D., Hoe, N., Landis, G.N., Tozer, K., Luu, A., Bhole, D., Badrinath, A. and Tower, J. (2007). Alteration of drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp. Gerontol., 42, 483-497. https://doi.org/10.1016/j.exger.2007.01.004
  25. Ginsberg, M.D., Feliciello, A., Jones, J.K., Avvedimento, E.V. and Gottesman, M.E. (2003). PKA-dependent binding of mRNA to the mitochondrial AKAP121 protein. J. Mol. Biol., 327, 885-897. https://doi.org/10.1016/S0022-2836(03)00173-6
  26. Gotoh, N. and Niki, E. (1992). Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim. Biophys. Acta, 1115, 201-207. https://doi.org/10.1016/0304-4165(92)90054-X
  27. Grasbon-Frodl, E.M., Kosel, S., Riess, O., Muller, U., Mehraein, P. and Graeber, M.B. (1999). Analysis of mitochondrial targeting sequence and coding region polymorphisms of the manganese superoxide dismutase gene in German Parkinson Disease patients. Biochem. Biophys. Res. Commun., 255, 749-752. https://doi.org/10.1006/bbrc.1998.9998
  28. Guo, Z., Boekhoudt, G.H. and Boss, J.M. (2003). Role of the intronic enhancer in tumor necrosis factor-mediated induction of manganous superoxide dismutase. J. Biol. Chem., 278, 23570-23578. https://doi.org/10.1074/jbc.M303431200
  29. Hermann, B., Li, Y., Ray, M.B., Wo, J.M. and Martin, R.C.G., II. (2005). Association of manganese superoxide dismutase expression with progression of carcinogenesis in Barrett Esophagus. Arch. Surg., 140, 1204-1209. https://doi.org/10.1001/archsurg.140.12.1204
  30. Hernandez-Saavedra, D. and McCord, J.M. (2003). Paradoxical effects of thiol reagents on Jurkat cells and a new thiol-sensitive mutant form of human mitochondrial superoxide dismutase. Cancer Res., 63, 159-163.
  31. Ho, J.C., Mak, J.C., Ho, S.P., Ip, M.S., Tsang, K.W., Lam, W.K. and Chan-Yeung, M. (2006). Manganese superoxide dismutase and catalase genetic polymorphisms, activity levels, and lung cancer risk in Chinese in Hong Kong. J. Thorac. Oncol., 1, 648-653. https://doi.org/10.1097/01243894-200609000-00008
  32. Ho, Y.-S. and Crapo, J.D. (1988). Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett., 229, 256-260. https://doi.org/10.1016/0014-5793(88)81136-0
  33. Hopper, R.K., Carroll, S., Aponte, A.M., Johnson, D.T., French, S., Shen, R.F., Witzmann, F.A., Harris, R.A. and Balaban, R.S. (2006). Mitochondrial matrix phosphoproteome: Effect of extra mitochondrial calcium. Biochemistry (Mosc), 45, 2524-2536. https://doi.org/10.1021/bi052475e
  34. Huang, Y., Peng, J., Oberley, L.W. and Domann, F.E. (1997). Transcriptional inhibition of manganese superoxide dismutase (SOD2) gene expression by DNA methylation of the 5' CpG island. Free Radic. Biol. Med., 23, 314-320. https://doi.org/10.1016/S0891-5849(97)00095-6
  35. Izutani, R., Asano, S., Imano, M., Kuroda, D., Kato, M. and Ohyanagi, H. (1998). Expression of manganese superoxide dismutase in esophageal and gastric cancers. J. Gastroenterol., 33, 816-822. https://doi.org/10.1007/s005350050181
  36. Jang, Y.C. and Remmen, V.H. (2009). The mitochondrial theory of aging: Insight from transgenic and knockout mouse models. Exp. Gerontol., 44, 256-260. https://doi.org/10.1016/j.exger.2008.12.006
  37. Janssen, A.M., Bosman, C.B., Kruidenier, L., Griffioen, G., Lamers, C.B., van Krieken, J.H., van de Velde, C.J. and Verspaget, H.W. (1999). Superoxide dismutases in the human colorectal cancer sequence. J. Cancer Res. Clin. Oncol., 125, 327-335. https://doi.org/10.1007/s004320050282
  38. Janssen, A.M., Bosman, C.B., van Duijn, W., Oostendorp-van de Ruit, M.M., Kubben, F.J., Griffioen, G., Lamers, C.B., van Krieken, J.H., van de Velde, C.J. and Verspaget, H.W. (2000). Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin. Cancer Res., 6, 3183-3192.
  39. Kang, D., Lee, K.-M., Park, S.K., Berndt, S.I., Peters, U., Reding, D., Chatterjee, N., Welch, R., Chanock, S., Huang, W.-Y. and Hayes, R.B. (2007). Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study. Cancer Epidemiol. Biomarkers Prev., 16, 1581-1586. https://doi.org/10.1158/1055-9965.EPI-07-0160
  40. Kim, A., Joseph, S., Khan, A., Epstein, C.J., Sobel, R. and Huang, T.T. (2010). Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin. Free Radic. Biol. Med., 43, 1501-1512.
  41. Kim, A., Murphy, M.P. and Oberley, T.D. (2005a). Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: A proposed adaptive response to mitochondrial redox imbalance. Free Radic. Biol. Med., 38, 644-654. https://doi.org/10.1016/j.freeradbiomed.2004.10.030
  42. Kim, A., Oberley, L.W. and Oberley, T.D. (2005b). Induction of apoptosis by adenovirus-mediated manganese superoxide dismutase overexpression in SV-40-transformed human fibroblasts. Free Radic. Biol. Med., 39, 1128-1141. https://doi.org/10.1016/j.freeradbiomed.2005.06.007
  43. Kim, A., Zhong, W. and Oberley, T.D. (2004). Reversible modulation of cell cycle kinetics in NIH/3T3 mouse fibroblasts by inducible overexpression of mitochondrial manganese superoxide dismutase. Antioxid. Redox Signal., 6, 489-500. https://doi.org/10.1089/152308604773934251
  44. Kim, H.-P., Roe, J.-H., Chock, P.B. and Yim, M.B. (1999). Transcriptional activation of the human manganese superoxide dismutase gene mediated by tetradecanoylphorbol acetate. J. Biol. Chem., 274, 37455-37460. https://doi.org/10.1074/jbc.274.52.37455
  45. Kinnula, V.L. and Crapo, J.D. (2004). Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol. Med., 36, 718-744. https://doi.org/10.1016/j.freeradbiomed.2003.12.010
  46. Klaunig, J.E., Kamendulis, L.M. and Hocevar, B.A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol., 38, 96-109. https://doi.org/10.1177/0192623309356453
  47. Knirsch, L. and Clerch, L.B. (2001). Tyrosine phosphorylation regulates manganese superoxide dismutase (MnSOD) RNAbinding protein activity and MnSOD protein expression. Biochemistry (Mosc), 40, 7890-7895. https://doi.org/10.1021/bi010197n
  48. Kocabas, N.A., Sardas, S., Cholerton, S., Daly, A.K., Elhan, A.H. and Karakaya, A.E. (2005). Genetic polymorphism of manganese superoxide dismutase(MnSOD) and breast cancer susceptibility. Cell Biochem. Funct., 23, 73-76. https://doi.org/10.1002/cbf.1128
  49. Kops, G.J., Dansen, T.B., Polderman, P.E., Saarloos, I., Wirtz, K.W., Coffer, P.J., Huang, T.T., Bos, J.L., Medema, R.H. and Burgering, B.M. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419, 316-321. https://doi.org/10.1038/nature01036
  50. Kuo, S., Chesrown, S.E., Mellott, J.K., Rogers, R.J., Hsu, J.-L. and Nick, H.S. (1999). In vivo architecture of the manganese superoxide dismutase promoter. J. Biol. Chem., 274, 3345-3354. https://doi.org/10.1074/jbc.274.6.3345
  51. Lan, Q., Mumford, J.L., Shen, M., DeMarini, D.M., Bonner, M.R., He, X., Yeager, M., Welch, R., Chanock, S., Tian, L., Chapman, R.S., Zheng, T., Keohavong, P., Caporaso, N. and Rothman, N. (2004). Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAHrich coal combustion emissions. Carcinogenesis, 25, 2177-2181. https://doi.org/10.1093/carcin/bgh240
  52. Li, H., Kantoff, P.W., Giovannucci, E., Leitzmann, M.F., Gaziano, J.M., Stampfer, M.J. and Ma, J. (2005). Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer Res., 65, 2498-2504. https://doi.org/10.1158/0008-5472.CAN-04-3535
  53. Li, N. and Oberley, T.D. (1998). Modulation of antioxidant enzymes, reactive oxygen species, and glutathione levels in manganese superoxide dismutase-overexpressing NIH/3T3 fibroblasts during the cell cycle. J. Cell. Physiol., 177, 148-160. https://doi.org/10.1002/(SICI)1097-4652(199810)177:1<148::AID-JCP16>3.0.CO;2-9
  54. Li, N., Oberley, T.D., Oberley, L.W. and Zhong, W. (1998). Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: Mechanistic studies. J. Cell. Physiol., 175, 359-369. https://doi.org/10.1002/(SICI)1097-4652(199806)175:3<359::AID-JCP14>3.0.CO;2-0
  55. Li, S., Yan, T., Yang, J.-Q., Oberley, T.D. and Oberley, L.W. (2000). The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res., 60, 3927-3939.
  56. Lin, P., Hsueh, Y.-M., Ko, J.-L., Liang, Y.-F., Tsai, K.-J. and Chen, C.-Y. (2003). Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan. Lung Cancer, 40, 123-129. https://doi.org/10.1016/S0169-5002(03)00027-8
  57. Liochev, S.I. and Fridovich, I. (2007). The effects of superoxide dismutase on $H_2O_2$ formation. Free Radic. Biol. Med., 42, 1465. https://doi.org/10.1016/j.freeradbiomed.2007.02.015
  58. MacMillan-Crow, L.A., Crow, J.P. and Thompson, J.A. (1998). Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry (Mosc), 37, 1613-1622. https://doi.org/10.1021/bi971894b
  59. Malafa, M., Margenthaler, J., Webb, B., Neitzel, L. and Christophersen, M. (2000). MnSOD expression is increased in metastatic gastric cancer. J. Surg. Res., 88, 130-134. https://doi.org/10.1006/jsre.1999.5773
  60. Mao, C., Qiu, L.X., Zhan, P., Xue, K., Ding, H., Du, F.B., Li, J. and Chen, Q. (2009). MnSOD Val(16)Ala polymorphism and prostate cancer susceptibility: A meta-analysis involving 8,962 subjects. J. Cancer Res. Clin. Oncol., Epub ahead of print.
  61. Melendez, J.A. and Baglioni, C. (1993). Differential induction and decay of manganese superoxide dismutase mRNAs. Free Radic. Biol. Med., 14, 601-608. https://doi.org/10.1016/0891-5849(93)90141-G
  62. Miao, L. and St Clair, D.K. (2009). Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med., 47, 344-356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018
  63. Millikan, R., Player, J., de Cotret, A., Moorman, P., Pittman, G., Vannappagari, V., Tse, C.-K. and Keku, T. (2004). Manganese superoxide dismutase Ala-9Val polymorphism and risk of breast cancer in a population-based case-control study of African Americans and whites. Breast Cancer Res., 6, R264-R274. https://doi.org/10.1186/bcr786
  64. Mitrunen, K., Sillanpaa, P., Kataja, V., Eskelinen, M., Kosma, V.-M., Benhamou, S., Uusitupa, M. and Hirvonen, A. (2001). Association between manganese superoxide dismutase (MnSOD) gene polymorphism and breast cancer risk. Carcinogenesis, 22, 827-829. https://doi.org/10.1093/carcin/22.5.827
  65. Oberley, L.W. (2001). Anticancer therapy by overexpression of superoxide dismutase. Antioxid. & Redox Signal., 3, 461-472. https://doi.org/10.1089/15230860152409095
  66. Oberley, L.W. (2005). Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed. Pharmacother., 59, 143-148. https://doi.org/10.1016/j.biopha.2005.03.006
  67. Oberley, L.W. and Buettner, G.R. (1979). Role of superoxide dismutase in cancer: A Review. Cancer Res., 39, 1141-1149.
  68. Oberley, L.W., Oberley, T.D. and Buettner, G.R. (1980). Cell differentation, aging and cancer: The possible roles of superoxide and superoxide dismutases. Med. Hypotheses, 6, 249-268. https://doi.org/10.1016/0306-9877(80)90123-1
  69. Oberley, L.W., Oberley, T.D. and Buettner, G.R. (1981). Cell division in normal and transformed cells: The possible role of superoxide and hydrogen peroxide. Med. Hypotheses, 7, 21-42. https://doi.org/10.1016/0306-9877(81)90018-9
  70. Oberley, T.D., Schultz, J.L., Li, N. and Oberley, L.W. (1995). Antioxidant enzyme levels as a function of growth state in cell culture. Free Radic. Biol. Med., 19, 53-65. https://doi.org/10.1016/0891-5849(95)00012-M
  71. Oberley, T.D., Xue, Y., Zhao, Y., Kiningham, K., Szweda, L.I. and St Clair, D.K. (2004). In situ reduction of oxidative damage, increased cell turnover, and delay of mitochondrial injury by overexpression of manganese superoxide dismutase in a multistage skin carcinogenesis model. Antioxid. Redox Signal., 6, 537-548. https://doi.org/10.1089/152308604773934297
  72. Raineri, I., Carlson, E.J., Gacayan, R., Carra, S., Oberley, T.D., Huang, T.-T. and Epstein, C.J. (2001). Strain-dependent highlevel expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic. Biol. Med., 31, 1018-1030. https://doi.org/10.1016/S0891-5849(01)00686-4
  73. Rhee, S.G., Chang, T.S., Bae, Y.S., Lee, S.R. and Kang, S.W. (2003). Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol., 14, S211-215. https://doi.org/10.1097/01.ASN.0000077404.45564.7E
  74. Rodriguez, A.M., Carrico, P.M., Mazurkiewicz, J.E. and Melendez, J.A. (2000). Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of $H_2O_2$. Free Radic. Biol. Med., 29, 801-813. https://doi.org/10.1016/S0891-5849(00)00362-2
  75. Rogers, R.J., Monnier, J.M. and Nick, H.S. (2001). Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-1beta utilizes an alternative pathway. J. Biol. Chem., 276, 20419-20427. https://doi.org/10.1074/jbc.M008915200
  76. Sahu, S.K., Oberley, L.W., Stevens, R.H. and Riley, E.F. (1977). Superoxide dismutase activity of Ehrlich ascites tumor cells. J. Natl. Cancer Inst., 58, 1125-1128.
  77. Schafer, F.Q. and Buettner, G.R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med., 30, 1191-1212. https://doi.org/10.1016/S0891-5849(01)00480-4
  78. Schieke, S.M. and Finkel, T. (2006). Mitochondrial signaling, TOR, and life span. Biol. Chem., 387, 1357-1361. https://doi.org/10.1515/BC.2006.170
  79. Shimoda-Matsubayashi, S., Matsumine, H., Kobayashi, T., Nakagawa-Hattori, Y., Shimizu, Y. and Mizuno, Y. (1996). Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene: A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's Disease.Biochem. Biophys. Res. Commun., 226, 561-565. https://doi.org/10.1006/bbrc.1996.1394
  80. Silva, S.N., Cabral, M.N., Bezerra de Castro, G., Pires, M., Azevedo, A.P., Manita, I., Pina, J.E., Rueff, J. and Gaspar, J. (2006). Breast cancer risk and polymorphisms in genes involved in metabolism of estrogens (CYP17, HSD17beta1, COMT and MnSOD): Possible protective role of MnSOD gene polymorphism Val/Ala and Ala/Ala in women that never breast fed. Oncol. Rep., 16, 781-788.
  81. Slanger, T.E., Chang-Claude, J. and Wang-Gohrke, S. (2006). Manganese superoxide dismutase Ala-9Val polymorphism, environmental modifiers, and risk of breast cancer in a German population. Cancer Causes Control, 17, 1025-1031. https://doi.org/10.1007/s10552-006-0043-5
  82. Spitz, D.R., Sim, J.E., Ridnour, L.A., Galoforo, S.S. and Lee, Y.J. (2000). Glucose deprivation-induced oxidative stress in human tumor cells: A fundamental defect in metabolism? Ann. N. Y. Acad. Sci., 899, 349-362.
  83. St. Clair, D., Zhao, Y., Chaiswing, L. and Oberley, T. (2005). Modulation of skin tumorigenesis by SOD. Biomed. Pharmacother., 59, 209-214. https://doi.org/10.1016/j.biopha.2005.03.004
  84. Sutton, A., Imbert, A., Igoudjil, A., Descatoire, V., Cazanave, S., Pessayre, D. and Degoul, F. (2005). The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet. Genomics, 15, 311-319. https://doi.org/10.1097/01213011-200505000-00006
  85. Sutton, A., Khoury, H., Prip-Buus, C., Cepanec, C., Pessayre, D. and Degoul, F. (2003). The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics, 13, 145-157. https://doi.org/10.1097/00008571-200303000-00004
  86. Trosko, J.E. (2003). Human stem cells as targets for the aging and diseases of aging processes. Med. Hypotheses, 60, 439-447. https://doi.org/10.1016/S0306-9877(02)00446-2
  87. Wang, L.I., Neuberg, D. and Christiani, D.C. (2004). Asbestos exposure, manganese superoxide dismutase (MnSOD) genotype, and lung cancer risk. J. Occup. Environ. Med., 46, 556-564. https://doi.org/10.1097/01.jom.0000128155.86648.a4
  88. Weinberg, F. and Chandel, N.S. (2009). Reactive oxygen speciesdependent signaling regulates cancer. Cell. Mol. Life Sci., 66, 3663-3673. https://doi.org/10.1007/s00018-009-0099-y
  89. Wenk, J., Brenneisen, P., Wlaschek, M., Poswig, A., Briviba, K., Oberley, T.D. and Scharffetter-Kochanek, K. (1999). Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J. Biol. Chem., 274, 25869-25876. https://doi.org/10.1074/jbc.274.36.25869
  90. Woodson, K., Tangrea, J.A., Lehman, T.A., Modali, R., Taylor, K.M., Snyder, K., Taylor, P.R., Virtamo, J. and Albanes, D. (2003). Manganese superoxide dismutase (MnSOD) polymorphism, $\alpha$-tocopherol supplementation and prostate cancer risk in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (Finland). Cancer Causes Control., 14, 513-518. https://doi.org/10.1023/A:1024840823328
  91. Xu, Y., Krishnan, A., Wan, X.S., Majima, H., Yeh, C.C., Ludewig, G., Kasarskis, E.J. and St Clair, D.K. (1999). Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene, 18, 93-102. https://doi.org/10.1038/sj.onc.1202265
  92. Xu, Y., Porntadavity, S. and St Clair, D.K. (2002). Transcriptional regulation of the human manganese superoxide dismutase gene: The role of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Biochem. J., 362, 401-412. https://doi.org/10.1042/0264-6021:3620401
  93. Yamanaka, N. and Deamer, D. (1974). Superoxide dismutase activity in WI-38 cell cultures: Effects of age, trypsinization and SV-40 transformation. Physiol. Chem. Phys., 6, 95-106.
  94. Yeh, C.C., Wan, X.S. and St Clair, D.K. (1998). Transcriptional regulation of the 5' proximal promoter of the human manganese superoxide dismutase gene. DNA Cell. Biol., 17, 921-930. https://doi.org/10.1089/dna.1998.17.921
  95. Zhang, H.J., Yan, T., Oberley, T.D. and Oberley, L.W. (1999). Comparison of effects of two polymorphic variants of manganese superoxide dismutase on human breast MCF-7 cancer cell phenotype. Cancer Res., 59, 6276-6283.
  96. Zhang, H.J., Zhao, W., Venkataraman, S., Robbins, M.E.C., Buettner, G.R., Kregel, K.C. and Oberley, L.W. (2002). Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J. Biol. Chem., 277, 20919-20926. https://doi.org/10.1074/jbc.M109801200
  97. Zhao, Y., Chaiswing, L., Oberley, T.D., Batinic-Haberle, I., St Clair, W., Epstein, C.J. and St Clair, D. (2005). A mechanismbased antioxidant approach for the reduction of skin carcinogenesis. Cancer Res., 65, 1401-1405. https://doi.org/10.1158/0008-5472.CAN-04-3334
  98. Zhao, Y., Oberley, T.D., Chaiswing, L., Lin, S.M., Epstein, C.J., Huang, T.T. and St Clair, D. (2002). Manganese superoxide dismutase deficiency enhances cell turnover via tumor promoterinduced alterations in AP-1 and p53-mediated pathways in a skin cancer model. Oncogene, 21, 3836-3846. https://doi.org/10.1038/sj.onc.1205477
  99. Zhao, Y., Xue, Y., Oberley, T.D., Kiningham, K.K., Lin, S.-M., Yen, H.-C., Majima, H., Hines, J. and St. Clair, D. (2001). Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res., 61, 6082-6088.
  100. Zhu, C.-H., Huang, Y., Oberley, L.W. and Domann, F.E. (2001). A family of AP-2 proteins down-regulate manganese superoxide dismutase expression. J. Biol. Chem., 276, 14407-14413.
  101. Zhu, C., Huang, Y., Weydert, C.J., Oberley, L.W. and Domann, F.E. (2001). Constitutive activation of transcription factor AP-2 is associated with decreased MnSOD expression in transformed human lung fibroblasts. Antioxid. Redox Signal., 3, 387-395. https://doi.org/10.1089/15230860152409031

Cited by

  1. UCP2 upregulation promotes PLCγ-1 signaling during skin cell transformation vol.56, pp.10, 2017, https://doi.org/10.1002/mc.22684
  2. Impaired antioxidant enzyme functions with increased lipid peroxidation in epithelial ovarian cancer vol.69, pp.10, 2017, https://doi.org/10.1002/iub.1675
  3. Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals vol.73, pp.4, 2017, https://doi.org/10.1107/S2053230X17003508