DOI QR코드

DOI QR Code

An Adaptive Cubic Interpolation considering Neighbor Pixel Values

이웃 픽셀 값을 고려한 적응적 3차 보간법

  • Lee, A-Yeong (Department of Electronics Computer Engineering, Hanyang University) ;
  • Kim, Hee-Chang (Department of Electronics Computer Engineering, Hanyang University) ;
  • Jeong, Je-Chang (Department of Electronics Computer Engineering, Hanyang University)
  • 이아영 (한양대학교 전자컴퓨터통신공학부) ;
  • 김희창 (한양대학교 전자컴퓨터통신공학부) ;
  • 정제창 (한양대학교 전자컴퓨터통신공학부)
  • Received : 2009.12.29
  • Accepted : 2010.03.13
  • Published : 2010.05.30

Abstract

As the resolution of the image display devices has been diversified, the image interpolation methods has played a more important role. The cubic convolution interpolation method has been widely used because it is simple but it has no limitation of using and a good performance. This paper suggests an adaptive method to the cubic convolution interpolation. Considering the difference of the neighbored pixels values to a prediction pixel, a parameter value in the cubic convolution interpolation kernel is chosen.

영상 표시장치의 화소수가 다양화됨에 따라, 영상 보간법은 더욱 중요한 역할을 하게 되었다. 3차 콘볼루션 보간법(Cubic Convolution Interpolation)은 간단하지만, 적용하는데 제한이 없고, 좋은 성능을 보이기 때문에 널리 쓰이고 있다. 이 논문은 3차 콘볼루션 보간법을 이용한 적응적 방법을 제안한다. 예측하려는 픽셀의 이웃 화소 값의 차이를 고려해서, 3차 콘볼루션 보간법 커널에 있는 파라미터 값을 적응적으로 선택한다.

Keywords

References

  1. R.G. Keys, "Cubic Convolution Interpolation for Digital Image Processing," IEEE Trans. Acoust. Speech Signal Process, ASSP-29, No. 6, pp. 1153-1160, Dec. 1981
  2. T. M. Lehmann, C. Gonner and K. Spitzer, "Survey: Interpolation Methods in Medical Image Processing," IEEE Trans. Medical Imaging, Vol. 18, No. 11, pp. 1049-1073, Nov. 1999 https://doi.org/10.1109/42.816070
  3. N. Nguyen and P. Milanfar, "A Wavelet-Based Interpolation-Restoration Method for Super-resolution," Circuits Systems Signal Process, Vol. 19, No. 4, pp. 321-338, 2000 https://doi.org/10.1007/BF01200891
  4. X. Li and M. T. Orchard, "New Edge-Directed Interpolation", IEEE Trans. Image Processing, Vol. 10, No. 10, pp. 1521-1527, 2001, https://doi.org/10.1109/83.951537
  5. J. W. Hwang and H. S. Lee. "Adaptive Image Interpolation Based on Local Gradient Features," IEEE Signal Processing Letters, Vol. 11, No. 3, pp. 359-362, 2004 https://doi.org/10.1109/LSP.2003.821718
  6. T. Mori, K. Kameyama, Y. Ohmiya, J. Lee and K. Toraichi, "Image Resolution Conversion Based on an Edge-Adaptive Interpolation Kernel," IEEE Pacific Rim Conference on Digital Object Identifier, pp. 497-500, 2007
  7. Hadhoud, M. M., Dessouky, M. I., et al, "Adaptive Image Interpolation Based on Local Activity Levels," Proceedings of the 20th National Radio Science Conference, C4 1-8, 2003
  8. Jong-ki Han and Seung-Ung Baek, "Parametric cubic convolution scaler for enlargement and reduction of image," Consumer Electronics, IEEE Transactions, 46(2), pp. 247-256, 2000 https://doi.org/10.1109/30.846654

Cited by

  1. Fast Multiple Mixed Image Interpolation Method for Image Resolution Enhancement vol.19, pp.1, 2014, https://doi.org/10.5909/JBE.2014.19.1.118