Local Appearance-based Face Recognition Using SVM and PCA

SVM과 PCA를 이용한 국부 외형 기반 얼굴 인식 방법

  • 박승환 (아주대학교 전자공학과) ;
  • 곽노준 (아주대학교 전자공학과)
  • Received : 2009.10.09
  • Published : 2010.05.25

Abstract

The local appearance-based method is one of the face recognition methods that divides face image into small areas and extracts features from each area of face image using statistical analysis. It collects classification results of each area and decides identity of a face image using a voting scheme by integrating classification results of each area of a face image. The conventional local appearance-based method divides face images into small pieces and uses all the pieces in recognition process. In this paper, we propose a local appearance-based method that makes use of only the relatively important facial components. The proposed method detects the facial components such as eyes, nose and mouth that differs much from person to person. In doing so, the proposed method detects exact locations of facial components using support vector machines (SVM). Based on the detected facial components, a number of small images that contain the facial parts are constructed. Then it extracts features from each facial component image using principal components analysis (PCA). We compared the performance of the proposed method to those of the conventional methods. The results show that the proposed method outperforms the conventional local appearance-based method while preserving the advantages of the conventional local appearance-based method.

얼굴 인식 방법 중에 한 얼굴 영상을 분할하여 분할한 각 부분마다 통계적 방법을 적용해 특징추출을 수행한 다음 각 부분마다 분류를 수행하고 이러한 분류결과를 모아서 voting등의 방법으로 얼굴 인식을 수행 하는 방법을 국부 외형 기반 방법(local appearance-based method) 이라고 한다. 기존에 제안된 국부 외형 기반 얼굴 인식은 얼굴 영상을 일정한 크기로 단순분할하고, 그 부분들을 모두 인식에 사용한다. 본고에서는 인식에 상대적으로 중요한 부분만을 사용하여 얼굴 인식을 수행하는 새로운 국부 외형 기반 얼굴 인식 방법을 제안한다. 본고에서는 단순 분할 방법 대신에 눈, 코, 입 등 인물 간의 차이가 잘 나타나는 얼굴 부분들을 support vector machine (SVM) 을 이용하여 검출한 후, 검출한 각 부분에 주성분 분석 (PCA) 을 적용하고 이를 통합하여 얼굴 인식을 수행하였다. 실험을 통해 제안한 방법과 기존 방법의 성능을 비교한 결과, 제안한 방법이 기존의 국부 외형 기반 방법의 장점을 지니는 동시에 성능을 개선시킴을 확인하였다.

Keywords

References

  1. Stan Z. Li and Anli K. Jain, Handbook of face recognition, Springer, pp. 1-11, 2004.
  2. Matthew Turk and Alex Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, Vol. 3, no. 1, pp. 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  3. Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7,pp. 711-720, July 1997. https://doi.org/10.1109/34.598228
  4. Kwang In Kim, Keechul Jung, and Hang Joon Kim, "Face recognition using kernel principal component analysis," IEEE Signal Processing Letters, Vol. 9, no. 9, pp. 40-42, February 2002.
  5. Rajkiran Gottumukkal and Vijayan K. Asari, "An improved face recognition technique based on modular PCA approach," Pattern Recognition Letters 25, pp. 429-436, 2004. https://doi.org/10.1016/j.patrec.2003.11.005
  6. Jian Huang, Pong C Yuen, Wen-Sheng Chen, and J. H. Lai, "Component-based LDA method for face recognition with one training sample," in Proceedings of the IEEE International Workshop on Analysis and Modelling of Faces and Gestures, 2003.
  7. Paul Viola, and Michael J. Jones, "Robust real-time face detection," International Journal of Computer Vision 57(2), pp. 137-154, 2004.
  8. Shiguang Shan, Yizheng Chang, Wen Gao, Bo Cao, and Peng Yang, "Curse of mis-alignment in face recognition: problem and a novel mis-alignment learning solution," in Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004.
  9. Bernd Heisele, Purdy Ho, Jane Wu and Tomaso Poggio, "Face recognition: component-based versus global approaches,"computervision and image understanding 91, pp6-21, 2003.
  10. P.J. Phillips et. al., "Overview of the Face Recognition Grand Challenge," IEEE Conf. Computer Vision and Pattern Recognition 2005.