Shape-Stabilized Phase Change Materials: Preparation and Properties of Frozen Gels from Polypropylene and n-Eicosane for Latent Heat Storage

형태안정성 PCM: 잠열저장을 위한 Polypropylene과 n-Eicosane으로 구성된 고화젤의 제조 및 특성

  • Son, Tae-Won (School of Textiles, Yeungnam University) ;
  • Lim, Hak-Sang (Department of Bio & Environmental Engineering, Semyung University) ;
  • Kim, Tae-Hun (Global Challenge Research Center) ;
  • Ko, Jae-Wang (Department of Textile Engineering, Graduate School, Yeungnam University)
  • Received : 2010.01.08
  • Accepted : 2010.01.27
  • Published : 2010.05.25

Abstract

Phase change materials based on polypropylene blended with n-eicosane were studied in this paper. In addition, this paper reviews recent studies on the preparation of shape stabilized phase change materials (SSPCM), such as SSPCM from polypropylenes and n-eicosane, their basic properties and possible applications to latent heat storage. The preparation methods used were the melting method and absorption methods. Shape stabilized PCM(SSPCM) prepared for DSC, WAXD, FTIR spectroscopy, ARES, results of the analysis of shape stability heat capacity to improve were identified.

본 연구에서는 상전이 온도가 36 $^{\circ}C$인 n-eicosnae을 열가소성 폴리올레핀 고분자인 폴리프로필렌과 블렌드하였으며, 또한 최근의 형태안정성 PCM(SSPCM)의 연구검토를 통하여 폴리프로필렌과 n-eicosnae의 특성과 잠열저장체로서의 적용 가능성을 확인하였다. 상전이 온도가 36 $^{\circ}C$인 n-eicosane과 폴리프로필렌을 멜팅방법과 흡수방법을 이용하여 시료를 제조하였다. 제조된 형태안정성 PCM(SSPCM)을 DSC, WAXD, FTIR spectroscopy, ARES로 분석결과 형태안정성, 열용량의 향상을 확인하였다.

Keywords

References

  1. U. Beginn, Macromol. Mater. Eng., 288, 245 (2003). https://doi.org/10.1002/mame.200390021
  2. R. S. Himran, A. Suwono, and G. A. Mansoori, Energy Sources, 16, 117 (1994). https://doi.org/10.1080/00908319408909065
  3. R. H. Bo, E. M. Gustafsson, and F. Setterwall, Energy (Oxford), 24, 1015 (1995).
  4. I. O. Salyer, US Pat. 5,053,446 (1991).
  5. I. O. Salyer, US Pat. 5,885,475 (1999).
  6. A. Sari, Ener. Conver. Manag., 45, 2033 (2004). https://doi.org/10.1016/j.enconman.2003.10.022
  7. Y. G. Bryant and D. P. Colvin, US Pat. 5499460 (1996).
  8. R. Cox, Chem. Fibers Int., 48, 475 (1998).
  9. Himran, A. Suwono, and G. A. Mansoori, Energy Sources, 16, 117 (1994). https://doi.org/10.1080/00908319408909065
  10. Holmen, J. Phys. Chem. A, 101, 4361 (1997). https://doi.org/10.1021/jp970381b
  11. J. C. Mulligan, D. P. Colvin, and Y. G. Bryant, Spacecraft Rockets, 33, 278 (1996). https://doi.org/10.2514/3.26753
  12. Y. Yamagishi, H. Takeuchi, A. T. Pyatenko, and N. Kayukawa, AIChE J., 45, 696 (1999). https://doi.org/10.1002/aic.690450405
  13. Y. Zhang and Y. Jiang, Measurement and Science Technology, 10, 201 (1996).
  14. Y. P. Zhang, K. P. Lin, R. Yang, H. F. Di, and Y. Jiang, Energy Build., 38, 1262 (2006). https://doi.org/10.1016/j.enbuild.2006.02.009
  15. J. Pushaw, US Pat. 5,677,048 (1997).
  16. I. Krupa, G. Mikova, and S. Luyt, Eur. Polym. J., 43, 895 (2007). https://doi.org/10.1016/j.eurpolymj.2006.12.019