Abstract
Contents Recommender System predicts user's preferences towards contents, and then recommends highly-predicted contents to user. Digital Identifier plays its part in identifying abstract works or digital contents in digital network environment. Digital Identifier could be effectively used in content-based filtering and collaborative filtering that are mainly used in Contents Recommender Systems. Therefore, this paper proposes an improvement of UCI metadata and resolution service for effective use of UCI in massive contents recommender systems. UCI metadata is expanded by adding elements such as abstract, keyword, genre, age, rate and review. Resolution service allows the operation systems to collect user preference for content by including input part of preference in a result page. This paper also designs and implements an improved UCI operation system and shows that the proposed improvement of UCI metadata and resolution service could be used for massive contents recommendation.
콘텐츠 추천 시스템은 콘텐츠에 대한 사용자의 선호도를 예측하고, 예측된 선호도가 높은 콘텐츠를 추천하는 시스템을 말한다. 디지털 식별자는 디지털 네트워크 환경에서 추상적인 작품(Work)이나 디지털 형태로 제작된 콘텐츠 등을 식별하는 역할을 한다. 디지털 식별자는 콘텐츠 추천 시스템에서 주로 이용되는 내용기반여과 기법과 협업여과 기법에서 효과적으로 활용될 수 있다. 본 논문에서는 UCI 국가표준 디지털 식별자를 대규모 콘텐츠 추천 분야에 효과적으로 활용할 수 있도록 기존 UCI 메타데이터를 확장하고 변환서비스를 개선하는 방안을 제시한다. UCI 메타데이터의 개선은 콘텐츠 추천에 필요한 요약, 키워드, 장르, 연령구분, 평점, 리뷰 항목을 추가하는 것이며, 변환서비스의 개선은 결과페이지에 콘텐츠에 대한 선호도 정보를 입력하는 부분을 포함함으로써 콘텐츠에 대한 선호도 정보를 수집할 수 있도록 하는 것이다. 개선된 UCI를 운용하는 시스템을 설계하고 구현함으로써 본 논문에서 제안한 개선 방안이 콘텐츠 추천에 활용될 수 있음을 보인다.