Abstract
In vocabulary recognition systems based on HMM(Hidden Markov Model)s, training process unseen model bring on show a low recognition rate. If recognition vocabulary modify and make an addition then recreated modeling of executed database collected and training sequence on account of bring on additional expenses and take more time. This study suggest efficient context dependent process modeling method using decision tree-based state tying. On study suggest method is reduce recreated of model and it's offered that robustness and accuracy of context dependent acoustic modeling. Also reduce amount of model and offered training process unseen model as concerns context dependent a likely phoneme model has been used unseen model solve the matter. System performance as a result of represent vocabulary dependence recognition rate of 98.01%, vocabulary independence recognition rate of 97.38%.
HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.