DOI QR코드

DOI QR Code

Soft-Decision Based Quantization of the Multimedia Signal Considering the Outliers in Rate-Allocation and Distortion

이상 비트율 할당과 신호왜곡 문제점을 고려한 멀티미디어 신호의 연판정 양자화 방법

  • 임종욱 (세종대학교 정보통신공학과) ;
  • 노명훈 (세종대학교 정보통신공학과) ;
  • 김무영 (세종대학교 정보통신공학과)
  • Received : 2010.02.28
  • Accepted : 2010.04.10
  • Published : 2010.05.31

Abstract

There are two major conventional quantization algorithms: resolution-constrained quantization (RCQ) and entropy-constrained quantization (ECQ). Although RCQ works well for fixed transmission-rate, it produces the distortion outliers since the cell sizes are different. Compared with RCQ, ECQ has the constraints on the cell size but it produces the rate outliers. We propose the cell-size constrained vector quantization (CCVQ) that improves the generalized Lloyd algorithm (GLA). The CCVQ algorithm is able to make a soft-decision between RCQ and ECQ by using the flexible penalty measure according to the cell size. Although the proposed method increases the small amount of overall mean-distortion, it can reduce the distortion outliers.

기존 데이터 압축 방식에는 크게 resolution-constrained quantization (RCQ) 방식과entropy-constrained quantization (ECQ) 방식이 있다. RCQ 방식은 고정 비트율 전송을 가능하게 하지만 셀 크기의 변화에 따른 이상 신호왜곡이 발생하며, ECQ 방식은 셀 크기가 고정된 대신에 이상 비트율 할당 문제가 발생한다. 본 논문에서는 기존 RCQ 방식의 대표적인 학습기법인 generalized Lloyd algorithm (GLA)을 개선한 cell-size constrained vector quantization (CCVQ) 방식을 제안한다. CCVQ 알고리즘은 셀 크기에 따라 유동적으로 패널티 척도를 주는 방식으로 기존의 RCQ와 ECQ 사이의 soft-decision을 가능하게 한다. 제안 알고리즘을 사용할 경우 기존의 GLA에 비해 약간의 평균왜곡 증가는 발생하나 이상 신호왜곡을 줄일 수 있다.

Keywords

Acknowledgement

Supported by : 학술진흥재단

References

  1. A. Gersho,"Asymptotically optimal block quantization," IEEE Trans. Inf. Theory, vol. IT-25, no. 4, pp. 373-380, 1979.
  2. P. L. Zador, "Asymptotic quantization error of continuous signals and the quantization dimension," IEEE Trans. Inf. Theory, vol. IT-28, no. 2, pp. 139-149, 1982.
  3. T. D. Lookabaugh and R. M. Gray, "High-resolution quantization theory and the vector quantizer advantage," IEEE Trans. Inf. Theory, vol. 35, no. 5, pp. 1020-1033, 1989. https://doi.org/10.1109/18.42217
  4. R. M. Gray and D. L. Neuhoff, "Quantization," IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2325-2383, 1998 https://doi.org/10.1109/18.720541
  5. W. B. Kleijn, A Basis for Source Coding: Course Notes. KTH, Stockholm, 2008.
  6. V. Grancharov and W. B. Kleijn, "Speech quality assessment," Handbook of Speech Processing, J. Benesty, A. Huang, and M. Sondhi, Eds. Springer, ch. 5, pp. 83-102, 2007.
  7. S. Kweon, K. Shin, and Z. Zheng, "Statistical real-time communication over ethernet for manufacturing automation systems," in Proc. Fifth IEEE Real-Time Techn. Apps. Symp., Vancouver, pp. 192-202, 1999.
  8. W. R. Gardner and B. D. Rao, "Theoretical analysis of the high-rate vector quantization of LPC parameters," IEEE Trans. Speech Audio Process., vol. 3, no. 5, pp. 367-381, 1995. https://doi.org/10.1109/89.466658
  9. M. Y. Kim, and W. B. Kleijn, "Resolution- Constrained Quantization With JND-Based Perceptual- Distortion Measures," IEEE Signal Process letters, vol. 13, no. 11, pp. 703-706, 2006. https://doi.org/10.1109/LSP.2006.879454