ISSN 1226-0657

J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 17, Number 2 (May 2010), Pages 137–143

ON THE WEAK NATURAL NUMBER OBJECT OF THE WEAK TOPOS FUZ

IG SUNG KIM

ABSTRACT. Category Fuz of fuzzy sets has a similar function to the Category Set. But it forms a weak topos. We study a natural number object and a weak natural number object in the weak topos Fuz. Also we study the weak natural number object in Fuz^{C} .

1. INTRODUCTION

Category Fuz of fuzzy sets has a similar function to the topos Set. Fuz has finite products, middle object, equalizers, exponentials and weak subobject classifier. But Fuz is not a topos, it forms a weak topos. There are some comparisons between weak topos Fuz and topos Set. A natural number object in a topos means an object together with morphisms. An important characterization of natural number objects in a topos was given by P. Freyd. Natural number object applied to define the order structure and retains a certain amount of Booleanness. In this paper, first we show that Fuz has no nontrivial natural number object. So we define a weak natural number object in a weak topos. And we show that there exists a weak natural number object in the weak topos Fuz and Fuz^C.

2. Preliminaries

In this section, we state some definitions and properties which will serve as the basic tools for the arguments used to prove our results.

Definition 2.1. An *elementary topos* is a category \mathcal{E} that satisfies the following;

 \bigodot 2010 Korean Soc. Math. Educ.

⁽T1) \mathcal{E} is finitely complete,

Received by the editors April 17, 2009. Revised February 10, 2010. Accepted May 7, 2010. 2000 *Mathematics Subject Classification*. 18B25.

 $Key\ words\ and\ phrases.$ weak topos, Fuz, natural number object, weak natural number object. This paper was supported by Sangji University Research Fund, 2008.

(T2) \mathcal{E} has exponentiation,

(T3) \mathcal{E} has a subobject classifier.

(T2) means that for every object A in \mathcal{E} , the endofunctor $(-) \times A$ has its right adjoint $(-)^A$. Hence for every object A in \mathcal{E} , there exists an object B^A , and a morphism $ev_A : B^A \times A \to B$, called the evaluation map of A, such that for any Yand $f : Y \times A \to B$ in \mathcal{E} , there exists a unique morphism g such that $ev_A \circ (g \times id) = f$;

$$\begin{array}{ccc} Y \times A & \stackrel{f}{\longrightarrow} & B \\ g \times id & & \downarrow id \\ B^A \times A & \stackrel{ev_A}{\longrightarrow} & B \end{array}$$

And subobject classifier in (T3) is an \mathcal{E} -object Ω , together with a morphism $\top : \mathbf{1} \to \Omega$ such that for any monomorphism $h : D \to C$, there is a unique morphism $\chi_h : C \to \Omega$, called the character of $h : D \to C$ which makes the following diagram a pull-back;

Example 2.2. Category Set is a topos. $\{*\}$ is a terminal object. $\Omega = \{0, 1\}$ and $\top : \{*\} \to \Omega$ with $\top(*) = 1$ is a subobject classifier. If we define

 $\chi_h = 1$ if c = h(d) for some $d \in D$,

 $\chi_h = 0$ otherwise

then χ_h is a characteristic function of D .

Category Fuz of fuzzy sets is a category whose object is (A, α_A) where A is an object and $\alpha_A : A \to I$ is a morphism with I = (0, 1] in Set and morphism from (A, α_A) to (B, α_B) is a function $f : A \to B$ in Set such that $\alpha_A(a) \leq \alpha_B \circ f(a)$ [3].

Definition 2.3. We say that an object (I, α_I) is a *middle object* of *Fuz* if there exists a unique morphism $f : A \to I$ such that $\alpha_A(a) = \alpha_I \circ f(a)$ for all (A, α_A) and $a \in A$.

Definition 2.4. We say that $((J, \alpha_J), i)$ is a *weak subobject classifier* of *Fuz* if there exists a unique morphism $\alpha_f : (A, \alpha_A) \to (J, \alpha_J)$ for all monomorphism $f : (B, \alpha_B) \to (A, \alpha_A)$ where J = [0, 1] and $\alpha_J(j) = 1$ for all $j \in J$ such that $\alpha_f(a) \leq J$

138

 $\alpha_A(a)$ and the following diagram

$$\begin{array}{ccc} (B, \alpha_B) & \xrightarrow{\alpha_B} & (I, \alpha_I) \\ f \downarrow & & \downarrow i \\ (A, \alpha_A) & \xrightarrow{\alpha_f} & (J, \alpha_J) \end{array}$$

is a pull-back.

Definition 2.5. A weak topos is a category \mathcal{E} that satisfies the following;

(WT1) \mathcal{E} has equalizer, finite product and exponentiation.

(WT2) \mathcal{E} has a middle object.

(WT3) \mathcal{E} has a weak subobject classifier.

Proposition 2.6. Category Fuz is a weak topos.

For the proof see Yuan and Lee [4].

Definition 2.7. A natural number object in a topos \mathcal{E} means an object N together with morphisms

$$\mathbf{1} \xrightarrow{0} N \xrightarrow{s} N,$$

where 1 is a terminal object in a topos, such that for any diagram

$$\mathbf{1} \xrightarrow{a} A \xrightarrow{f} A,$$

there exists a unique morphism $h: N \to A$ such that

commutes.

Definition 2.8. A weak natural number object in a weak topos Fuz means an object N together with morphisms

$$I \xrightarrow{0} N \xrightarrow{s} N,$$

where I is the middle object in the weak topos Fuz, such that for any diagram with a normal object A

$$I \xrightarrow{a} A \xrightarrow{f} A$$

IG SUNG KIM

there exists a unique morphism $h: N \to A$ such that

Ι	$\xrightarrow{0}$	$N \xrightarrow{s}$	N
id ight vert		$\downarrow h$	$\int h$
Ι	\xrightarrow{a}	$A \xrightarrow{f}$	A

commutes.

3. MAIN PARTS

Proposition 3.1. Fuz has no nontrivial natural number object.

Proof. In *Fuz*, the terminal object **1** is a singleton set $(\{*\}, \alpha_{\{*\}})$ with $\alpha_{\{*\}}(*) = 1 \in I$. Assume that there exists a natural number object in *Fuz*. That is, there exists an object (N, α_N) together with morphisms

$$\mathbf{1} = (\{*\}, \alpha_{\{*\}}) \xrightarrow{0} (N, \alpha_N) \xrightarrow{s} (N, \alpha_N)$$

such that for any diagram

$$\mathbf{1} = (\{*\}, \alpha_{\{*\}}) \xrightarrow[a]{a} (A, \alpha_A) \xrightarrow[f]{f} (A, \alpha_A),$$

there exists a unique morphism $h: (N, \alpha_N) \to (A, \alpha_A)$ such that

commutes.

We need a condition that $\alpha_N \circ 0(*) \geq \alpha_{\{*\}}(*)$, so that we have $\alpha_N \circ 0(*) = \alpha_N(0) = 1$ for $0 \in N$. Since $s : (N, \alpha_N) \to (N, \alpha_N)$ is a morphism in *Fuz*, where s(n) = n + 1, it satisfy that $\alpha_N \circ s(0) \geq \alpha_N(0)$. That is, $\alpha_N(1) \geq \alpha_N(0)$. So we get $\alpha_N(1) = 1$. Inductively we get $\alpha_N(n) = 1$ for all $n \in N$. Also, we need a condition that $\alpha_A \circ h \geq \alpha_N$, so that we have $\alpha_A(a) = 1$ for all $a \in A$.

Corollary 3.2. In Fuz, there exists an object (N, α_N) , where $\alpha_N(n) = 1$ for all $n \in N$, with morphisms

$$\mathbf{1} = (\{*\}, \alpha_{\{*\}}) \xrightarrow{0} (N, \alpha_N) \xrightarrow{s} (N, \alpha_N)$$

such that for any diagram

$$\mathbf{1} = (\{*\}, \alpha_{\{*\}}) \xrightarrow{a} (A, \alpha_A) \xrightarrow{f} (A, \alpha_A),$$

140

where $\mathbf{1} = (\{*\}, \alpha_{\{*\}})$ is a terminal object and $\alpha_A(a) = 1$ for all $a \in A$, there exists a unique $h : (N, \alpha_N) \to (A, \alpha_A)$ such that

commutes.

Lemma 3.3. Fuz has finite products.

Proof. Let $(A, \alpha_A), (B, \alpha_B)$ be two objects in Fuz. Consider $((A \times B, \alpha_{A \times B}), p_A, p_B)$ where $A \times B$ is the cartesian product of a pair (A, B) of the topos Set with $\alpha_{A \times B}$ =min $\{\alpha_A, \alpha_B\}$ and projection morphisms $p_A : (A \times B, \alpha_{A \times B}) \to (A, \alpha_A), p_B : (A \times B, \alpha_{A \times B}) \to (B, \alpha_B)$ satisfying $\alpha_B \circ p_B \geq \alpha_{A \times B}$ and $\alpha_A \circ p_A \geq \alpha_{A \times B}$. Then, for any morphisms $f : (X, \alpha_X) \to (A, \alpha_A)$ and $g : (X, \alpha_X) \to (B, \alpha_B)$, there exists a unique morphism $\langle f, g \rangle : (X, \alpha_X) \to (A \times B, \alpha_{A \times B})$ such that $p_A \circ \langle f, g \rangle = f$ and $p_B \circ \langle f, g \rangle = g$. Since $\alpha_A f(x) \geq \alpha_X(x), \alpha_B g(x) \geq \alpha_X(x)$ and $\alpha_{A \times B}(f(x), g(x)) =$ min $\{\alpha_A f(x), \alpha_B g(x)\}$, we have that $\alpha_{A \times B}(f(x), g(x)) \geq \alpha_X(x)$, so $\alpha_{A \times B} \circ (f, g) \geq$ α_X . Thus $\langle f, g \rangle : (X, \alpha_X) \to (A \times B, \alpha_{A \times B})$ is a morphism in Fuz. \Box

Theorem 3.4. Fuz has a weak natural number object.

Proof. Let (N, α_N) be an object with $\alpha_N(n) = 1$ for all $n \in N$. Then by Lemma 3.3, there exists an object $((N \times I), \alpha_{N \times I})$, where (I, α_I) is the middle object in *Fuz.* Consider the object $((N \times I), \alpha_{N \times I})$ with morphisms

 $I \xrightarrow{0} N \times I \xrightarrow{s'} N \times I$

defined by 0(i) = (0, i) and s'(n, i) = (n + 1, i). Then it satisfy that $\alpha_{N \times I} \circ 0 \ge \alpha_I$ and $\alpha_{N \times I} \circ s' \ge \alpha_{N \times I}$.

For any normal object (A, α_A) , we define a morphism $a : I \to A$ with a(i) = afor all $i \in (0, \alpha_A(a)]$ and a(i) = c for all $i \in (\alpha_A(a), 1]$, where $\alpha_A(c) = 1$. Then $\alpha_A a(i) \ge \alpha_I(i)$ making $a : I \to A$ a morphism in *Fuz*.

Then for any diagram,

$$I \xrightarrow{a} A \xrightarrow{f} A$$

there exists a unique morphism $h : N \times I \to A$ defined by h(0,i) = a(i) and $f \circ h(n,i) = h(n+1,i)$ such that

IG SUNG KIM

$$I \xrightarrow{0} N \times I \xrightarrow{s'} N \times I$$

$$id \downarrow \qquad \qquad \downarrow h \qquad \qquad \downarrow h$$

$$I \xrightarrow{a} A \xrightarrow{f} A$$

commutes.

Then $\alpha_A a(i) \ge \alpha_I(i)$ and h(0,i) = a(i) imply $\alpha_A h(0,i) \ge \alpha_I(i)$, so $\alpha_A h(0,i) \ge \alpha_{N \times I}(0,i)$.

And $\alpha_A \circ f \ge \alpha_A$ implies $\alpha_A \circ f \circ h(0, i) \ge \alpha_A \circ h(0, i) \ge \alpha_I(i)$.

So we have that $\alpha_A h(1,i) \ge \alpha_I(i)$. It implies that $\alpha_A h(1,i) \ge \alpha_{N \times I}(1,i)$. Inductively we show that $\alpha_A h(n,i) \ge \alpha_{N \times I}(n,i)$.

If there exists an another morphism $k : N \times I \to A$ such that k(0, i) = a(i) and $f \circ k(n, i) = k \circ s'(n, i) = k(n+1, i)$.

Then we have that $f \circ k(0,i) = k \circ s'(0,i)$ and $f \circ h(0,i) = h \circ s'(0,i)$.

Also we have $k \circ 0(i) = a(i)$ and $h \circ 0(i) = a(i)$. So $f \circ k(0, i) = k(1, i)$ and $f \circ h(0, i) = h(1, i)$.

This imply $k(1, i) = f \circ a(i) = h(1, i)$.

Inductively, $h: N \times I \to A$ is the unique morphism in *Fuz*.

Theorem 3.5. For any small category C, Fuz^C has a weak natural number object. Proof. Consider a constant functor $W: C \to Fuz$ having $W(a) = N \times I$ for all $a \in C$ and $W(f) = id_{N \times I}$ for all $f \in C$. Also consider a constant natural transformation $s': W \to W$ having $s'_a(n,i) = (n+1,i)$ and a constant natural transformation $0: J \to W$ having $0_a(i) = (0,i)$ where $J: C \to Fuz$ is a functor defined by J(a) = Ifor all $a \in C$ and J(f) = id. Then for any diagram

$$J \xrightarrow{k} K \xrightarrow{f} K$$

there exists a unique morphism $h: W \to K$ defined by $h_a(0,i) = k_a(i)$ and $f \circ h(n,i) = h(n+1,i)$, that is, the following diagram

$$J \xrightarrow{0} W \xrightarrow{s'} W$$
$$id \downarrow \qquad \qquad \downarrow h \qquad \qquad \downarrow h$$
$$J \xrightarrow{k} K \xrightarrow{f} K$$

commutes.

142

Since $k: J \to K$ is a natural transformation, the square

commutes. And we get $k_a(i) = h_a 0_a(i) = h_a(0,i)$. These imply $K(\alpha)h_a(0,i) = h_b(0,i)$. We assume that $K(\alpha)h_a(n,i) = h_b(n,i)$. Since $f: K \to K$ is a natural transformation, we have $K(\alpha) \circ f_a \circ h_a(n,i) = f_b \circ h_b(n,i)$. By definition of h, this implies $K(\alpha)h_a(n+1,i) = h_b(n+1,i)$. By induction, we get $K(\alpha)h_a(n,i) = h_b(n,i)$ for any $n \in N$. So $h: W \to K$ is a natural transformation. \Box

References

- 1. R. Goldblatt: Topoi. North-Holland, 1984.
- 2. P.T. Johnstone: Topos Theory. Academic Press, N.Y., 1977.
- X. Yuan & E. S. Lee: Category Fuz, Wtopos and Category FuzFuz. J. Math. Anal. Appl. 201 (1966), 489-501.
- X. Yuan, H. Li & E.S. Lee: Categories of fuzzy sets and weak topos. *Fuzzy Sets and Systems* 127 (2002), 291-297.

DEPARTMENT OF DATA INFORMATION, SANGJI UNIVERSITY, WONJU, KANGWON 220-702, KOREA *Email address*: iskim@sangji.ac.kr