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Abstract

In the present paper we introduce and study fundamental concepts in the framework of L-fuzzifying topology (so called
(2, L)-fuzzy topology) as L-concepts where L is a complete residuated lattice. The concepts of (2, L)-derived, (2, L)-
closure, (2, L)-interior, (2, L)-exterior and (2, L)-boundary operators are studied and some results on above concepts are
obtained. Also, the concepts of an L-convergence of nets and an L-convergence of filters are introduced and some impor-
tant results are obtained. Furthermore, we introduce and study bases and subbases in (2, L)-topology. As applications of
our work the corresponding results (see [10-11]) are generalized and new consequences are obtained.
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1. Introduction

Recently [13] (see[2, 4, 6, 9]) the concept of (M, L)-
fuzzy topology was appeared as afunction 7 : MX — L
where X is an ordinary set and M, L are some types of
lattices.

The concept of (2, L)-fuzzy topology (L-fuzzifying
topology) appeared in [2] by Hohle under the name " L-
fuzzy topology” (cf. Definition 4.6, Proposition 4.11 in
[2]). Inthe case of L = I where I isthe closed unit inter-
val [0,1] the terminology " L-fuzzifying topology” traces
back to Ying (cf. Definition 2.1 in [10]).

Themain purpose of this paper isto introduce and study
some fundamental conceptsin (2, L)-fuzzy topology as L-
concepts where L is a complete residuated | attice.

In [16], it was proved that the concept of complete
residuated lattice (see [7, 12]) and the concept of strictly
two-sided commutative quantale (see[3, 8]) are equivalent.
Sometimes we need more conditions on L such as that the
finite meet is distributive over arbitrary joins or the com-
pletely distributive law or the double negation law as we
illustrate through this paper.

As applications of our work generalizations of the cor-
responding resultsin [10-11] are obtained and new conse-
guences are obtained as we illustrate through this paper.
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The contents of our paper are arranged as follows:

In Section 2, we recall some basic definitions and results
in complete residuated lattice and in (2, L)-fuzzy topol ogy.
In Section 3, we consider and study some properties of the
concepts of (2, L)-derived, (2, L)-closure, (2, L)-interior,
(2, L)-exterior and (2, L)-boundary operators in (2, L)-
fuzzy topology. Section 4 isdevoted to introduce and study
an L-convergence of netsin (2, L)-fuzzy topology. In Sec-
tion 5, we introduce and study an L-convergence of filters
in (2, L)-topology. In Section 6, we introduce and study
bases and subbases in (2, L)-fuzzy topology. Findly in
Section 7 a conclusion is given to illustrate some applica
tions of our work.

2. Preliminaries

First, we introduce the definition of complete residu-
ated lattice.

Definition 2.1 [7, 12, 16]. A structure (L,V, A, *, —
,L, T) is caled a complete residuated lattice if and only
if

() (L, Vv, A, L, T) isacomplete lattice whose greatest
and least element are T, | respectively,
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(2) (L, *, T) isacommutative monoid, i.e.,
(a) * isa commutative and associative binary oper-
ation on L, and
(b) Foreverya € Lya*x T = a,
(3) — isabinary operation which couple with x as:
axb<cifandonlyifa <b— ¢ Va,b,c€ L.

Definition 2.2 [3, 8]. A structure (L,V, A, *,—, L, T)
is called a strictly two-sided commutative quantale if and
only if

@) (L,V, A, L, T) isacomplete lattice whose greatest
and least element are T, | respectively,

(2) (L, *, T) isacommutative monoid,

(3) (a) = isdistributive over arbitrary joins, i.e.,
ax \/ bj=\/ (axbj)Vae L, ¥{bjljcJ} CL,

jeJ jeJ
(b) — is a binary operation on L defined by:
a—b= \ X VabelL.
Axa<b

Theorem 2.3 [16]. A structure (L,V,A,x,—, 1, T) is
a complete residuated lattice if and only if it is a strictly
two-sided commutative quantale.

Corallary 2.4 [16]. A structure (L,V,A,*,—, L, T)
is a complete MV -agebra if and only if (L,V, A, x, —
, L, T) is a complete residuated lattice satisfies the addi-
tional property

(MV) (a —b) —b=aVb Va,be L.

In the rest of the present paper we assume that L is
a complete residuated lattice. Now, we recall the laws of
completely distributive and double negation for L.

Definition 2.5 [1]. L is satisfies the completely distribu-
tive law if the following statement is satisfied: V{A,|j €
J} C 2L where 2 is the power set of L, we have
AVA; =V (AfG):
jeJ fell A; i€
je€J

Note that if L satisfies the completely distributive law
will satisfies that finite meet is distributive over arbitrary
joins but the converse not true

Definition 2.6 [4]. L is satisfies the double negation law
if the follows statement is satisfied: (¢ — L) — L =
a Vac€lL.

Definition 2.7 [4]. Let f,g € L*X. The L-equality be-
tween f and g is denoted by [[f, ¢]] and defined asfollows:
([f,9l] = é\X((f(w) — g(x)) A (g(z) — f(2))).

Definition 2.8 [15]. Let f,g € LX. The L-inclusion
of f in g is denoted by [[f,g[[ and defined as follows:

[, 9ll= A (f@) — g(x)).

zeX

In the following we recall the concept of (M, L)-fuzzy
topology and illustrate that the L-fuzzifying topology isin
fact the (2, L)-fuzzy topology.

Definition 2.9 (Hohle [2], Hohle and Sostak [4], Kubiak
[6], Sostak [9], [14]). An (M, L)-fuzzy topology isamap-
ping 7 : MX — L such that

D 7(1x) =7(1p) =T,

@ 7(AAB) > 7(A)AT(B)VA, B € M,

@) 7(V A4j) = A\ 7(A)) V{4;lj € J} € M.

jeJ JjeJ

The pair (M*X,7) is called an (M, L)-fuzzy topological
space.

When M = {0,1}, Definition 2.9 will reduce to that
of (2, L)-fuzzy topology (L-fuzzifying topology).

Some basic concepts and resultsin (2, L)-fuzzy topol-
ogy (L-fuzzifying topology) which are useful in the present
paper are given as follows:

Definition 2.10 [15]. Let (X,7) be a (2, L)-fuzzy topo-
logical space. The family of al (2, L)-closed sets will be
denoted by F, € L"), and defined as follows: F,(A4) =
7(X — A) where X — A isthe complement of A.

Definition 2.11 [3]. Let x € X. The (2, L)-neighborhood
system of z is denoted by ¢, € L"), and defined as fol-
lows: ¢ (A)= \/ 7(B).

z€BCA
Remark 2.12. Hohle proved in Proposition 3.13 [3] that
if L satisfies the completely distributive law, then 7(A) =

A ¢u(A).
z€A
Proposition 2.13 [15]. Let (X, ) be a (2, L)-fuzzy topo-
logical spaceand let A, B € 2X. ThenVz € X,
(1) %(X) = Tv@J((b) =1,
() v (AN B) < 92 (A) A pa(B),
(4) If thefinite meet is distributive over arbitrary joins,
then ¢, (AN B) > ¢.(A) A p.(B),
B) wa(A) <V (py(A) Vpa(B)) VB € 2%,
yeX—-B

Definition 2.14 [15]. The (2, L)-closure operator is

denoted by CI. € (L*)?", and defined as follows:
ClL(A)(z) = po(X — A) — L.

Proposition 2.15 [15]. Let (X, 7) bea (2, L)-topological
space, then:

(1) If L satisfiesthe double negation law, then ¢, (A) =
Cly(X — A)(z) — LVA€2X VreX,

(2) CL.(0) = 1y where 15 € L and defined as fol-
lows: 1p(z) = L Va € X,

() A < Cl, (A) VA € 2X,
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@ 1f A, Be2X AC B, thenCl,(A) < Cl,(B),
(5) If the finite meet is distributive over arbitrary joins,
then Cl. (AU B) < Cl,(A) v Cl,(B) VA, B € 2¥.

3. (2, L)-derived, (2,
(2.L)-ex

L)-closure, (2, L)-interior,
exterior and (2, L)-boundary operatorsin
(2, L)-fuzzy topology

Definition 3.1. Let (X, 7) be a (2, L)-fuzzy topological
space. The (2, L)-derived operator is denoted by d, <
(LX)2”", and defined as follows:
d-(A)(z) = (pa(B) — L).
BN(A—{z})=0
Lemma 3.2. For every a,b € L we have
A (a; — ) =(V a;) —b.
jeJ jeJ
Proof. For every a,b € L we have

(Va)) —b = \/ rx= \/ A
i€t MVa<b  V(Axa)<b
jeJ jedJ

= \/ A= \V A

VjEJ, A a;< b V jEJAS a;—sb

= \/ A= /\ (a; —b). O
A< A (a;—b) jeJ
jeJ
Lemma 3.3. Let (X,7) be a (2, L)-fuzzy topological

space. Thenwehave, d, (A)(z) =
1.

pa (X —A)Ufz}) —

Proof. From Lemma 3.2 and Proposition 2.13 (2) we have

d-(A)x) = N\ (e(B)— 1)
BN(A—{z})=0

BN(A—{z})=0
BC(X—A)Ua}
=p. (X -A)u{a}) — L.O

sz(B)) — L1

Lemma3.4. Foreverya € Lwehavea < (¢ — 1) —
1.

Proof. For every a € L weobtaina — 1 <a — L
which impliesthat (¢ — 1) *a < 1 sothata * (a —
1)< l.Hencea<(a— 1) — 1. O

Theorem 3.5. Let (X, 7) be a (2, L)-fuzzy topological
space. Then we have

(1) Hdr(@)a 1@] =T,

2IfA,Be2* AC B, thend.(A) <d,(B),

@) vA,Be€2X d.(AUB)>d,(A)Vd.(B),
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(4) If the finite meet is distributive over arbitrary joins,
thend, (AU B) =d,(A)vd,(B) VYA,B € 2%,

(5) F,(4) < [[d-(A), A[[,

(6) If L satisfies the double negation law and the com-
pletely distributive law, then F-(4) = [[d,(A), A[[.

Proof. (1) From Lemma 3.3 we have

d-(0)(z) =¢.(X —0)U{z}) — L
= (X)) — L
=T — 1=1=1y(x) Vo € X.

2 If A C B, then from Lemma 3.3 and Proposition
2.13 (2) we have

dr (A)(z) = (X —A)U{z}) — L
< (X = B)u{z}) — L =d.(B)(z).
(3) From Proposition 2.13 (3) we have
d.(AU B)(x)

=@ (X = (AUB))U{z}) — L
= (X —A4)n(X - B))U{z}) — L
)

=6 (X = HU{zDN (X - Bu{a}) — L
> (e (X = ) Uz} A (X = B)U{a})) — 1
= (ee((X =) Ufa}) — 1) v

(¢e((X = B)U{z}) — 1)
= d.(A) Vv d.(B).

(4) From Proposition 2.13 (4) the inequality in the proof
of (3) above become equality so that the result hold. (5)
From Lemma 3.3 and Lemma 3.4 we have

[[d-(4), A[[
= A (d-(A) (@) — Ala)

zeX

rzeX—A z€A

(A @&@@—1)AT

zeX—A

= A (@el(X = A Ufa}) — 1) — 1)

reX—-A
> A (X -AUfzh = N wulX - A)
reX-A reX—-A

=NV

zeX—A zeBCX—A

7(B) > 7(X — A) = F,(A).

(6) The inequalities in the proof of (5) above become
equalities from the double negation law and from Remark

(A @@ — 1) (A @ — D)



Some Fundamental Concepts in (2,) —Fuzzy Topology Based on Complete Residuated Lattice—Valued Logic

2.12 (since L satisfies the completely distributive law) re-
spectively so that the result hold. O

Definition 3.6. Let A, B € 2%, The binary crisp predicat
D :2X x 2% — {1 T}, caled crisp jointness, is given
asfollows:

[T, if AnNB#£0
D(4,B) = { L if ANB=0.

Theorem 3.7. Let (X,7) be a (2, L)-fuzzy topological
space. Thenforany z, A,

D ClL(A)(z)= A (Fr(B) — 1),
zgBDA
(@ Clr(A)(x) = A (p«(B) — D(A, B)),

Be2X
(4) F-(4) < [[A, CL.(A)]],
(5) If L satisfies the double negation law and the com-
pletely distributive law, then F-(4) = [[A, Cl,(A)]].

Proof. (1) From Lemma 3.2 we have

Clr(A)(z) =¢@e(X —A4) — L

(Y xem) 1

r€EX—BCX-A

=(\ E®) 1

cZBDA

N\ (F-(B)— 1).

rz¢BDA

(2) From Lemma 3.2 we have

N (#:(B) — D(A, B))

Be2X

(A

Be 22X, AnB=0

A (pa(B) — D(A,B)))

Be 2X, AnNB#0

(A em —1)A

ANB=0

(¢2(B) — D(4, B))) A

A (e(B) —T))
ANB#0
= A (@B — AT
ANB=0

= A (pu(B)— 1)

BCX-A

=( V ¢(B)—1

BCX—-A

=, (X —A) — L =Cl.(4) ().

(3) If x € A, then from Proposition 2.15 (3) we have
(AUd-(A))(x) =T = Cl(A)(x). Now suppose z ¢ A.

Then from Lemma 3.3 we have

(Aud-(A)(z) = Az)Vd-(A)(x)

= d-(A)(z)

= (X =AUz} — L
(

= (X —A) — L =Cl(A)(2).
(4) From Proposition 2.15 (3) and Lemma 3.4 we have

[A,CL(A)]] = [[A CL@[[ A [[Cl(A),A[[

=T A [[CL(A), A[[
= A\ (Cl(A)w) — A())

zeX

(A (€)@ — n)A

reX—A

(A (Cl(a)@) —T))

z€A

A (CL(4)(z) — J_)> AT

reX—A

N (pa(X =4) — 1) — 1)
rzeX—A

/\ (pa:(X - A)

rzeX—A

=NV

zeX—-A zeéBCX—-A
> (X — A) = F,(A).

Y

7(B)

(5) The inequalities in the proof of (4) above become
equalities from the double negation law and from Remark
2.12 (since L satisfies the completely distributive law) re-
spectively so that the result hold. O

From Proposition 2.15 (3) and Theorem 3.7 (4), (5) we
have the following result.

Corollary 3.8. Let (X,7) be a (2, L)-fuzzy topological
space. Then we have

(1) Fr(A) < [[Cl-(A), A[[, and

(2) If L satisfies the double negation law and the com-
pletely distributive law, then F.(4) = [[C1,(A), A[[.

Definition 3.9. Let (X, 7) be a (2, L)-fuzzy topological
spaceand A C X. The (2, L)-interior operator is denoted
by Int, € (L*)%", and defined asfollows:

Int(A)(z) = ¢x(4).

Definition 3.10. Let A, B € 2% . The binary crisp predicat
C: 2% x2X — {1, T}, caled crisp inclusion, is given
asfollows:

T if ACB
Q(A’B):{L, it AgB.
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Theorem 3.11. Let (X, 7) be a (2, L)-fuzzy topological
space. Thenfor any x, A, B, we have

() [[Int-(A),Cl. (X —A) — L[[=T,

(2) If L satisfies the double negation law, then
[[Int-(A),Cl;(X —A) — 1]] =T,

@) [[Int-(X),X]] =T,

4 [[Int-(A),A[[=T,

() (r(B) A (S (B, A))) <

(6) 7(A) < [[A, Int-(A)]],

(7) If L satisfies the completely distributive law, then
T(A) = [[A, Int-(A)]],

(8) Int,(A)(x) < A(x) A (d-(X — A)(z) — 1),

(9) If L satisfies the double negation law, then
Int (A)(z) = A(z) A (d (X — A)(z) — L),

(10) If A C B, then [[Int,(A), Int,(B)[[ =T,

(12) Int, (AN B) < Int.(A) A Int.(B),

(12) If thefinite meet isdistributive over arbitrary joins,
then Int, (AN B) > Int,(A) A Int.(B).

[[B, Int-(A)[[.

Proof. (1) FromLemma3.4wehave Cl,. (X — A)(z) —
L = (pa(4) — 1) — 1) =2 @(4) =
Int.(A).

(2) Since the double negation law is satisfied, the in-
equality in the proof of (1) above becomes equality so that
the result hold.

(3) Int,(X) = pa(X) = T.

(4) Using Proposition 2.15 (3) and (1) above we have

Int;(A)(z) <Cl(X—-A)(zr) — L
<(X—-A)(z) — L
=A4A— L)(z) — L
< (A(z) — L) — L = A(w).

(5) If B € A, then the result holds. Now suppose B C A.
Then from Proposition 2.13 (2), we have

= N Int.(4)(x)

[[B, Int-(A)[]

zEB
zeB z€B
2 7(B) = (1(B) A (S (B, 4))).

(6) From (4) above we have

[A Int(A)]] = [[A Int-(A)[[ A [[Int(

= [[A4, Int.(A)[]
= /\IntT (A)(x)

r€A

= /\ (,Om(A) >

r€EA

A), Al

(7) From Remark 2.12 the inequality in the proof of (6)
above becomes equality so that the result hold.
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8)If x & A, then ¢, (A) = L. Hence, Int,(A)(x) =
1L =A(z) A (d (X — A)(x) — L).If x € A, thenfrom
Lemma 3.3 and Lemma 3.4 we have
A) A (dr (X — A) (@) — 1)
=d (X -A)(z) — L

= (pe(AU{z}) — 1) — L = 9u(A) = Int;(A)(z).

(9) Since the double negation law is satisfied, the in-
equality in the proof of (8) above becomes equality so that
the result hold.

(10) Follows from Proposition 2.13 (2).
(12) Follows from Proposition 2.13 (3).
(12) Follows from Proposition 2.13 (4). O

From Theorem 3.11 (4), (6) and (7) we have thefollow-
ing result.

Corollary 3.12. Let (X, ) be a (2, L)-fuzzy topologica
space. Then we have

(1) 7(A) < [[A, Int,(A)[[, and

(7) If L satisfies the completely distributive law, then
7(A) = [[A, Int, (A)[[.

Definition 3.13. Let (X,7) be a (2, L)-fuzzy topo-

logical space. The (2, L)-exterior operator is denoted
by Ext.(A) € (LX)?", and defined as follows:
Ext,(A)(z) = p. (X — A).

Theorem 3.14. Let (X, 7) be a (2, L)-fuzzy topological
space. Thenfor any z, A, B, we have

(D) [[Ext,(A),Cl-(A) — L[[=T,

2 If L wtisﬁes the double negation law, then

[[Ext,(A),C ( ) — L] =T,
Q) [[Ext-(0),X]] =T,
@) [[Ext, (A X Al[=
(5) (F-(B) A <_ (A,B»)_HXfB,ExtT(A)H,
(6) FT(A) < [[X —A,E.’ttT(A)H,

(7) If L satisfies the completely distributive law, then
Fr(A) = [[X — A, Ext,(4)]],

(8) Ext, (A)(x) < (X — A)(x) A (d-(A)(z) — L),

(9) If L satisfies the double negation law, then
Eat,(A)(x) = (X — A)(2) A (d,(A)(z) — 1),

(10) If A C B, then [[Ext.(B), Ext,(A)[[ =T,

(11) Ext.(AU B) < Ext.(A) A Ext,(B),

(12) If thefinite meet is distributive over arbitrary joins,
then Ext. (AU B) > Ext.(A) A Ext,(B),

(13) [[Int,(A), Ext (X — A)]] =T

Proof. The proof is obtained from Theorem 3.11 in a
straightforward manner. O

Definition 3.15. For any A C X, the (2, L)-boundary op-
erator is denoted by b, € (LX)ZX, and defined as follows:
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Lemma 3.16. Let (X,7) be a (2, L)-fuzzy topological
space. Thenforany x, A,
b(A)(@)= A (0z(B) — D(B,A)AD(B

Be 2X
A))).

Proof. Applying Proposition 2.13 (2), we have

a(X_

N (#2(B) — D(B,A) AD(B, (X — A)))

Be 2X

:< A

Be 2X, ANB#0, BNX—-A=0
D(B, A) A D(B, (X — A))))
A( A (pu(B) —
Be 2X, ANB#0), BNX —A#(
D(B, A) A D(B, (X — A))))
A ( A (¢2(B) —
Be 2X, ANB=0, BNX—A=0
D(B,A)AD(B, (X — A))))

A ( A (p2(B) —

Be 2X, AnNB=0, BNX—-A#0

(¢z(B) —

D(B, A) A D(B, (X — A))))

:( A (apx(B)—fl'/\J_))

Be 2X, ANB#0, BNnX—-A=0

/\( A

Be 2X, ANB#0, BNX —A#0

( A

Be 2X, AnNB=(), BNX—-A=()

( A

Be 2X, AnNB=0, BNX—-A#0

= (A (pu(B) — D) ATATA

((pl(B) — T A T))

>

(¢2(B) — LA 1))

>

(g@m(B) —s LA T))

(A @m—0D)

BCX—-A

%(B)—>l)/\( V %(B)—>i)

BCX-A

Theorem 3.17. Let (X, 1) be a (2, L)-fuzzy topologica
space. Then for any A,
(D @ [[b,(X). 10)] = T, (0) [[ (@),1@]] :T

(2)(a) [[b-(A),CL(A) N ClL(X — A)]] =
br(A) = b (X — A),

—Fuzzy Topology Based on Complete Residuated Lattice—Valued Logic

@) [[Int,(A) U Ext.(A),b-(A) — L[[=T,

(4 If L satisfies the double negation law, then
[[Int-(A) U Ext (A), b (A) — L1]] =T,

(5 @ [[Cl-(A),AUb(A)]] = T, (B) Fr(4) <
[[o-(A), A,

©) @ [[Int-(A), AN (b-(A) — L[ =T, (0
T(A) < [[b-(A) N A, 1p]],

(7) If L satisfies the double negation law, then
[[Int-(A), AN (b-(4) — L)]] =T.

Proof. (1) (8) From Proposition 2.13 (1) we have
br (X)(z) = (pu(X) — L) A (pa(0) — L)
=(T—L)A(L— 1)
= LAT=1=1y(x).
(1) (b) The proof issimilar to (1) (a).
=ClL(A) () NCl (X — A)(z)
= (@I(A) — J_) A (gpw(X —A) — J_)
=b,(4)().
(2) (b) Obvious.
(3) From (2) above and Lemma 3.4 we have
bo(A)(x) — L
= (CL(A) N CL (X — A))(z) — L
= (Cl;(A)(z) — L) V (Cl(X — A)(z) — 1)
= (((px(X - A) — J_) — J_) vV ((QO@(A) — J_) — J_)
Z @az(X - A) \4 <pa:(A)
= Ext.(A)(z) V Int.(A)(z) = (Int,(A) U Ext.(A))(z).
(4) Under the condition that L satisfiesthe double nega-
tion law, the inequality in the proof of (3) above becomes
equality so that the result holed.
(5) (8) If z € A, thenfrom Proposition 2.15 (3) we have
Cl.(A)(z) = (AUb(A)(z) =T.Ifz & A, then
(AUb-(A))(x) = br(A)(x)
= (gom(A) — J_) A (gﬁt(X — A) — J_)
= @I(X - A) — 1= CZT(A)(x)
(5) (b) From Corollary 3.8 (1) and Theorems 3.7 (3) we
have

F.(A) < [[Cl-(A),A[] =

6) (@ If = ¢ A, then Int,(A) =
(br(A)(z) — L) = L. Ifxz € A, then
Aw) 0 (b (A) (&) — 1)
=b;(A)(r) — L
= ((pz(4) — 1)
= (pa(4) — L) — L
> ¢2(A) = Int,(A) ().

[[AUb-(A), A[[ < [[b-(A), A[[-
A(z) N

Apa(X —A) — 1)) — L
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(6) (b) From (6) (a) and Corollary 3.12 (1) we obtain

= N (A(@) — Int-(4)(z))

zeX

= [[A, Int,(A)[[ > 7(A).

(7) Since L satisfies the double negation law, the in-
equality in the proof of (6) (a) above becomes equality so
that the result holed. O

4. L-convergence of netsin (2, L)-fuzzy topology

Definition 4.1. Let (X, ) be a (2, L)-fuzzy topologica
space. The class of al netsin X is denoted by N(X) =
{S|S: D — X, where (D, >) isadirected set}.

Definition 4.2 The binary L-predicates ©>,xe
LIN(X)*X) are defined as follows:

Sea=J\ (pa(4) — 1),
SZA

Soxz= /\ (p(4) — 1), SeN(X)
SZA

where S > z stands for the degree in L to which S is an
L-convergent to x and S o x stands for the degreein L to
which z isan L-accumulation point of S. Also, S and £
arethe binary crisp predicates” aimost in” and ” often in”
respectively.

Definition 4.3. The L-setslim S, adh S € LX defined as
follows:

limS(z)=S>2 and adh S(z) =S x =z
arecalled L-limit and L-adherence of S, respectively.

Definition 4.4. Let S, T € N(X) Thebinary crisp predicat
<:2X x 2% — {1, T}, isgiven asfollows:

T, if T <SS,
<(T’S>—{ Lt T#S,

where T < S stand for 7" is a subnet of S.
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Theorem 4.5. Let (X,7) be a (2, L)-fuzzy topologica
space. Then we have
D d-(A)(z) =V
SEN(X)
(2) If L istotally ordered and that the finite meet isdis-

tributive over arbitrary joins, thend, (4)(z) < '\  ((C
SEN(X)

(€ (S, A={az}) A (S 2)),

(S, A={z})) A (S > ),
@) Clr(A)(z) =V
SeN(X)
(4) If L is totaly ordered and that the finite meet
is distributive over arbitrary joins, then Ci.(A)(zx) =
V(€ (S,4) A (S ),
SeN(X)
(5) If L satisfiesthe double negation law, then F'.(A) <
A (S (S4) — [[lims, A[[),
SeN(X)
(6) If L istotally ordered and satisfies the double nega-
tion law, the completely distributive law, then F.(A) =
A (S (8,4)) — [[limS, A[]),
SeN(X)
™0V

TeN(X)

Proof. (1) We know that S > x =

(€ (S, A) A (S ),

(< (T,9)N(Tr2z) <Sxa.

A (pe(A) — L1).
SZ A
Also,

V (€S A-{zh) A (S )

SEN(X)

=V A

SEN(X), SCA—{z} Be2X,S ¢ B

(¢z(B) — 1).

Sinceforany S € N(X) suchthat S C A — {z}, onecan
provethat S ¢ (X — A) U {z}, asfollows:

Suppose S £ (X — A) U {z}. Then there exiss m € D
andn € D suchthatn > mand S(n) € (X — A) U {z}.
So, S(n) ¢ X — (X — A)U{z}) = A— {z}. Thus
S ¢ A — {z}, we have a contradiction. Therefore from
Lemma 3.3 we have

\V N (p=(B)— 1)

SEN(X), SCA—{z} Be2X,S¢ B

< \/ (pal(X = A)U{a}) — 1)
SEN(X), SCA—{z}

=0 (X = A)U{z}) — L =d.(A) ()

(2) We want to prove that d.(A)(z) < 'V ((C
SEN(X)

(S, A — {z})) A (S > 2)). Now, if d-(A)(z) = L then
the result holds. Suppose d,(A)(z) > L and suppose
(#2) @, 4@y 1) = 1B € 2¥]pa(B) > dr(A)(2) —
1} isthe strong (d-(A)(z) — L)-cut of ¢,. Now, for
any B € ((‘Dw)(d,(A)(m)—>L)’ wehave BN (A —{x}) # 0
(Indeed, from Lemma 3.2 we have
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dr(A) () = (Bﬂ(Af{x}):(]J

¢2(B)) — L then

S

(A) (@) — L

(Ve 1)
BN(A—{z})=0

>/ e(B),

BN(A—{z})=0

i.e, for every B € 2X suchthat BN (A — {z}) =
®7 (Pa:(B) < d.,-(A)(CL‘) - J~7 then (PI(B) }
d;(A)(xr) — L sotha B ¢ (‘pw)(dT(A)(z)*»J_?' .
Then for any B ¢ (g@m)(df(é)-(m)_iL), thqe exists
g € BN (A — {z}). In addition, since L is totaly
o_rdered one can prove t_h_ar[ ((g&w)(dT(A)(z)_&), Q) isa
directed set from Proposition 2.13 (4). Now, we consider
the net 5* : (S‘oz)(d,-(A)(ac)—>L) — A — {2} defined as
follows: S*(B) = z for every B € (¢,)
Then we have

(dr(A)(z)—L)"

V (€S A-{ahnsea) = N\ (pa(B) — L)

SEN(X) s 2B
¢ B then B ¢
(#2) (@, (4y@)— 1) Suppose B €
%)(dT(A)(w)Hl)' Thenforany €' (‘p”)(dT(A)(m)ﬂL)
such that C C B, we have S*(C) = z¢ € C C B. So,
S* < B. Therefore,

/\ (pz(B) — 1)
“q B

> A

B¢ (¢.)

Now, one can show that if S*
as follows:

(¢a(B) — 1) = dr(4)(2),
(dr (A) (@)= 1)

because (¢,(B) — 1) > d-(A)(z) for any B ¢
(22) (a1 (1000 i B & (22) 4, (40—
e, po(B) # d-(A)(z) — L then p,(B) <
d;(A)(x) — L, because L is totally ordered so that
pe(B) — L > (d(A)a) — 1) — L >
dr(A)(x)). e d (A)@) <V (C (S, A—{z})A
SEN(X)
(St x)).

(3) If x € A, thentheresult holds. If x ¢ A, then from
(1) above and Theorem 3.7 (3) we have

Y

(s A- @) r(sea)

SEN(X)

=V (€@ aEsn),

SEN(X)

because A = A — {z}.

(4) Since L istotally ordered and that the finite meet is
distributive over arbitrary joins, the inequality in the proof
of (3) above becomes equality so that the result holed.

(5) From Lemmas 3.2, 3.4 and the double negation law
we have

A (€ (5,4) — [[lims, A[])

SEN(X)
=N A (A @B — 1) —1)
SCA zeX-A  §gB

=N A ((CV eum) — 1) —1)

SCA zeX—-A S ¢ B

A AV D)

SCA z€X-A s¢ B

So, from (3) above, Corollary 3.8 (1) and the double nega-
tion law we have

Fy(4)

N
Q
b
=
N
I
Bl
|
o
Q
i
=
}_

8
m

IA
8
m

Il
8
M

8
m

8
m

Il
> s B B b

hS
193}
N
bS
©n

- ((< (s,4)) — [[lims, A[[).

0
m
2
X

(6) Under the conditions that L is totally ordered and
satisfies the double negation law, the completely distribu-
tive law, the inequalitiesin the proof of (5) above becomes
equalities so that the result holed.

(MNSetRs={A:SZAtand r ={A: T ¢ A}.
Then for any T' < S (for the definition of the subnet see
[5]), one can deduce that it C G asfollows:

Suppose T = So K. If S Z A, then there exists m € D
such that S(n) ¢ A when n > m, where > directs the
domain D of S. Now, we will show that " ¢ A. If not,
then there exists p € E such that T'(q) € A when ¢ > p,
where > directs the domain £ of T. Now, for p € E and
g > pwehave K(q) > m, because T < S. Moreover,
since S ¥ A and K(q) > m, we have S(K(q)) ¢ A.
But S(K(q)) = T(q) € A. They are contrary. Hence,
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Rs C Br. Therefore

V (<@s)area)

Te N(X)

= \/ /\ (pz(A) — L)

T<S T7gA

VoA (ea(4) — 1)

T<S A€epr
/\ (SD:IJ(A) - J—)
AeRs

A (a(4) — 1) =S e O
SZA

IN

Definition 4.6. Let S € N(X) and A, € 2%. The binary
crisp predicat < : 2% x 2% — {1, T}, isgiven as fol-
lows:

T, if ScA
Q(S’A):{ 1. if SgA.

Lemma 4.7. Let (X,7) be a (2, L)-fuzzy topologica
space. Then we have

ser= N\ (A(x)/\T(A) — s(S,A)).

Ae 2X

Proof. If BC AandS ¢ A, then S ¢ B. Therefore

N (pa(4) — 1)

5% A

= \/ 9z (A) — L
SZA

\/ \/ 7(B) — L

SgZ A z€BCA

\/ 7(B) — L

S ¢ B, z€B

- A

S % B, z€B

A (B(x) AT(B) — <(S, B))

Be 2X

A <A(x) AT(A) — <(S, A)).

Ae 2X

S>>z =

v

(7(B) — 1)

Conversely, since ¢, (A) > 7(A), then we have

A (A(x) AT(A) — <(S, A))

Aeg 2X
S ¢ A zeA

> N (pe(4) — L)=Sp>2. O
SZA

(r(4) — 1)
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In the following theorem we prove that for a uni-
versal nets in (2, L)-fuzzy topological space limS(z) =
adhS(z) Vz € X.

Theorem 4.8.
[[lims, adhs]] = T.

If S is a universa net, then

Proof. For any net S € N(X) and any A € 2% one can
obtainthat if S ¢ A, then S Z A. Suppose S isauniversa
netin X andS Z A.Then, S £ X —A.S0S5 ¢ A (In-
deed, S ¢ X — A if and only if there exists m; € D
such that for every n € D,n > my,S(n) € X — A
if and only if there exists m; € D such that for every
n € D,n>mq,S(n) & Aifandonly if S ¢ A.). Hence
for any universal net S in X, we have
ims(@) = A (ea(d) — 1)
S <A
= N\ (pu(4) — 1) =adhS(z). O
SZ A

5. L-convergence of filtersin (2, L)-fuzzy topology

Definition 5.1. Let F'(X) be the set of al filters on X.
The binary L-predicates >, xe LF(X)*X) " are respec-
tively defined as follows:

Krao= M (p.(4) — K(4)),
Ae2X

Koxz= N (K(A) — Cl.(A)(x)), K € F(X).
Ae2X

Definition 5.2. The L-setslim K, adh K € LX defined
asfollows:

limK(z) = K>z and adhK(z) = K « x.
arecaled L-limit and L-adherence of K, respectively.

Theorem 5.3. (1) If S € N(X) and K isthefilter corre-
sponding to S,
ie, K ={A:S < A}, then

@ [[limK*,limS]] = T, and

(b) [[achKS, adhS]] = T.

(2 If K € F(X) and S¥ is the net corresponding to
K,
ie,S¥:D— X, (z,A) > z,(z,A) € D,
where D = {(z,A):z € A€ K}, (z,A) > (y,B) if and
only if A C B, then

@ [[limS¥ limK]] = T, and

(b) [[adhs™, adhK]] = T.
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Proof. (1) (a) For any = € X, we have
A (#a(4) — 1)
AZKS

N (a(A) — 1) =limS().
SEZ A

limKS(z) =

(b) adhk¥(x) = A Cl(A)(x)

AeKSs

= N\ (po(X = 4) — 1)
SSA

= A
SZ (X-A)

= adhS(x).

(pa(X —A) — 1)

(2) (a) First weprovethat S5 ¢ Aifandonlyif A € K.
If A € K,then A # () and o there exists at least an ele-
ment z € A. Sofor (z,A) € D and (y, B) € D such that
(y,B) > (z,A),BC Aandso S¥(y,B) =y € B C A.
Thus SK< A.

Conversely, suppose SK< A. Then there exists
(y,B) € D such that (z2,C) > (y,B) and we have
SK(z,0) € A. Soforevery z € B,(z,B) > (y, B) and
SE(z,B) = z € Aimplies B C A. Then A € K. Thus
A¢ Kifandonlyif SK¢ A. Now,

Y

= /\ (pz(A) — L)

SK Z A

)\ (pz(A) — L) =limK (z).
AZK

limSX (z)

(b) First weprovethat X — A € K if andonly if SK7 A.
Suppose SXZ A. Then there exists (z, B) € D such that
for every (y,C) € D with (y,C) > (z,B),S%(y,C) ¢
A. Now, for every 2 € B,(z,B) > (z,B) and
SK(x,B) =r ¢ Ajie,BNA=0s0oB C X - A
andthen X — A € K.

Conversely, suppose X — A € Kthen X — A # 0
and thus it contains at least an element x. Now, for any
(2,C) € D suchthat (z,C) > (z,X — A), one can have
that S (2,C) = 2 ¢ A. Hence, S5 A. Now,

adhS¥(z) =85% xx
= A (p=(4) — 1)

SK XA

= N Cl(x-4)
X—AeK

= A CL(B)(z) = adhK (z). O
BeK

6. Basesand subbasesin (2, L)-fuzzy topology

Definition 6.1. Let (X, 7) a (2, L)-topological space. A
map 3 : 2¥ — L iscaled abase of 7 if and only if the
following statements hold:

@ [[7[[=T,and
(2 p=(A) <V B(B) VA € 2%,
zeBCA
Theorem 6.2. Let (X, 7) a(2, L)-topological space. Then
we have
@ If 7 =
V A B(B)

U Ba=A XeA
AEA

and

(2) If L satisfies the completely distributive law and 3
isabase of 7, then 7 = 3(Y).

g, where BV (A) =
VA € 2% then 3 is a base of T,

Proof. (1) We assume 7 = 5(“) and will provethat 3 isa
base of 7. Since 7 = B, hence [[8, 7[[ = T. Now, we
will prove that for any A € 2%, ¢, (A) < '\ B(B).
zeBCA
Assumethatz € B C Aand |J By = B, thenthereexists
ACA
Mo € A suchthat = € B,,, and furthermore A [(B)) <

BBy) <V B(B)sotha e
rz€BCA
V A BBy < V

U Ba=A €A z€BCA
AEA

G(B). Hence,

e (A) =
c€BCA

=\ V AsBy< \ 80B).

z€BCA |J Br=B AeA zEBCA
AEA

(2) Assumethat 3 is abase of T, and we want to prove
that for every A € 2%,

T(A) =V N\ B(By). Since |J By = A, then
U Br=A XeA AEA
T(A) =7(U Byx) > A 7(Bx) > A B(B)). Hence,
AEA AEA AEA
(A= V. A BB
U Ba=A Aeh
Conversely, we note that ¢, (A4) < G(B) and
z€BCA

from Remark 2.12 we have

T(4) = N ea(4)

A€A
<AV o=\ As(@),
AeA zeBCA fe Il Mz AeA

z€A
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where M, = {Blzx € B C A}. Since for any
f e T8 U/F) = A we have that 7(A4) <
z€A z€A
V.  AB(By). O
U Ba=A AeA

AEA

Definition 6.3. Let (X, 7) a(2, L)-topological space. Then
¥ € L) iscaled asubbase of 7 if 1/(77) is abase of 7
where ¢(N7)(A) = V N B(Bx) VA €

B,\1 =A M EA
A1 €A (finite)

2X where (") stand for the finite intersection of ).

7. Conclusion

(1) Let L = [0,1] and let « e [0,1](0:1x[01]) js
defined asfollows: o * 8 = maz(0,a + 3 — 1), then the
structure (L, V, A, %, —, 0, 1) isacompletely distributive
complete M V-algebraso that Lemma5.1[10] (resp. Theo-
rem 5.1 [10], Theorem 5.2 [10], Theorem 2.2 [11], Lemma
2.1 [11], Theorem 2.3 [11] Theorem 6.1 [10], Theorem
6.2 [10], Lemma 6.1 [10], Theorem 7.1 [10], Theorem 4.1
[10]) is obtained as a specia case of Lemma 3.3 (resp.
Theorem 3.5, Theorem 3.7, Theorem 3.11, Lemma 3.16,
Theorem 3.17, Theorem 4.5, Theorem 4.8, Lemma 4.7,
Theorem 5.3, Theorem 6.2) above.

(2) Let L = [0,1] and let + € [0,1](011x[0.1) js de-
fined asfollows: a x 8 = af. Then (L, V, A, x,—,0,1)
is a completely distributive complete residuated lattice.
Note that the double negation law is not satisfied since
(0 — 0 —0=0—0=1# aifa e (0,1).
Hence, Lemmas 3.2, 3.3, 3.4, 3.16, 4.7, Theorems 3.5 (1)—
(5), 3.7 (1)—4), 3.11 (1), (3)8) and (10)—«12), 3.14 (1),
(3)—(8), (10)«(13), 3.17 (1)), (5) and (6), 4.5 (1)—<(4) and
(7), 4.8, 5.3, 6.2 and Corollaries 3.8 (1), 3.12 are satisfied
as corollaries from our results.

(3) If (L,V,A,*,—, 1, T) is a complete MV-
algebra, then Lemmas 3.2, 3.3, 3.4, 3.16, 4.7, Theorems 3.5
(1)—(3) and (5), 3.7 (1)—(4), 3.11 (1)—(6) and (8)—«11), 3.14
(2)—(6), (8)—«(11) and (13), 3.17, 4.5 (1), (3), (5) and (7),
4.8,5.3, 6.2 (1) and Corollaries 3.8 (1), 3.12 (1) are satis-
fied as corollaries from our results because from Corollary
(2) [16], any complete MV -algebra, is a complete resid-
uated lattice. Furthermore any complete MV —agebra
satisfies the double negation law.

4 If (L,V,A,x,—, 1, T) is a complete MV-
algebra, such that the finite meet is distributive over arbi-
trary joins, then Lemmas 3.2, 3.3, 3.4, 3.16, 4.7, Theorems
3.5 (D)—5), 3.7 (1)~4), 3.11 (1)«6) and (8)—«(12), 3.14
(1)—(6) and (8)—(13), 3.17, 4.5 (1), (3), (5) and (7), 4.8,
5.3, 6.2 (1) and Corollaries 3.8 (1), 3.12 (1) are satisfied as
corollaries from our results.
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5) If (L,V,A,x,—, L, T) isacompletely distribu-
tive complete MV —algebra, then Lemmas 3.2, 3.3, 3.4,
3.16, 4.7, Theorems 3.5, 3.7, 3.11, 3.14, 3.17, 4.5 (1), (3),
(5) and (7), 4.8, 5.3, 6.2 and Corollaries 3.8, 3.12 are satis-
fied as corollaries from our results.

6) If (L,V,A,*,—, L, T) isacompletely distribu-
tive complete MV —agebra and L is totaly ordered then
al resultsin Section 3, 4, 5 and 6 are satisfied as corollar-
ies from our results.
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