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Abstract

In this paper, we introduce the concept of fuzzy r-quasi open sets which are generalizations of fuzzy r-open sets, and
obtain some basic properties of such fuzzy sets. Also we introduce and study the concepts of fuzzy r-quasi continuous

mapping and fuzzy r-quasi open(closed) mapping.
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1. Introduction

Let X be a set and I = [0, 1] be the unit interval of the
real line. I will denote the set of all fuzzy sets of X. Ox
and 1x will denote the characteristic functions of ¢ and X,
respectively. A¢ will denote the complement 1x — A of a
fuzzy set A of X

A Chang’s fuzzy topological space [1] is an ordered
pair (X, 7), where X is a non-empty set and 7 C I satis-
fying the following conditions:

ONH0x ,1x eT;

(0O2)VA, B € IX,if A,B € 7,then (AN B) € 7;

(03) for every subfamily {A; : i € J} C I%, if
A; € T,thenU;c g A; € 7.

A smooth topological space [4] is an ordered pair
(X,7), where X is a non-empty set and 7 : IX — [ is
a mapping satisfying the following conditions:

OD 7(0x) = 7(1x) = ;

(02)VA,B € IX, 7(ANB) > 7(A) A 7(B);

(03) for every subfamily {4; : i € J} C
I*, 7(Uies A;) > Nies 7(A;). Then the mapping

7 : IX — Tiscalleda smooth topology on X . The number
7(A) is called the degree of openness of A.

A mapping 7* : IX — I is called a smooth cotopology
[4] iff the following three conditions are satisfied:

€ r(0x) =7 (1x) = 1;

(CQVA,B e I*, 7*(AUB) > 7*(A) AT*(B);

(C3) for every subfamily {4; : i € J} C
I, m(Nies Ai) > Nies T(Ad).
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Definition 1.1 ([3]). A fuzzy quasi topological space (sim-
ply, FQTS) is an ordered pair (X, 7 ), where X is a non-
empty set and 7 : IX — I is a mapping satisfying the
following conditions:

(QOD T(0x) = 1;

(QO2)VA,BeI*, T(ANB) >T(A) AT (B);

(QO3) for every subfamily {4, : i € J} C
I*, T(Uies Ai) > Nies T(A).

Then the mapping 7 : IX — I is called a fuzzy quasi
topology on X. The number 7 (A) is called the degree of
quasi openness of A.

Chang’s fuzzy topology = smooth topology = fuzzy
quasi topology

Definition 1.2 ([3]). A mapping 7* : IX — I is called a
Juzzy quasi cotopology if the following three conditions are
satisfied:

QCHT*(1x) =1;
(QC2)VA, B € IX, T*(AUB) > T*(A) AT*(B);

(QC3) for every subfamily {4; : i € J} C
I*, T (Nies Ai) > Nies TH(As).

Then the mapping 7* : IX — I is called a fuzzy quasi
cotopology on X . The number 7*(A) is called the degree
of quasi closedness of A.

Theorem 1.3 ([3]). If 7 is a fuzzy quasi topology on X,
then the mapping 7* : IX — I, defined by 7*(A) =
T (A€) where A€ denotes the complement of A, is a fuzzy
quasi cotopology on X. And if 7* is a fuzzy quasi co-
topology on X, then the mapping 7 : IX — I, defined by
T(A) = T*(A°),is a fuzzy quasi topology on X.
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2. Main Results

Definition 2.1. Let (X,7) be a FQTS and A € 1. Then

(1) The r-closure of A, denoted by qCl,.(A), is defined
by

q@ClL(A)=n{K e I* . T*(K) >r,AC K},

where 7*(K) = T (K°).

(2) The r-interior of A, denoted by gInt,.(A), is de-
fined by

qInt,(A)=U{K e I* : T(K)>r,K C A}.

A fuzzy set A is said to be fuzzy r-quasi open if
T(A) > r, Ais said to be fuzzy r-quasi closed if T*(A) >
T,

Theorem 2.2. Let (X
Then

,7) be a FGTS and A, B € I¥.

Proof. Obvious. O

Theorem 2.3. Let (X,7) be a FGTS and A € IX. Then
(1) ¢Cl,.(A)¢ = qInt,.(A°).
2) q[ntr(A)c = qur(AC)'

Proof. (1)For A € IX,

qCl.(A)° = (N{KeIl*:T*(K)>r ACK})*
= U{K°: K cI¥ 7(K% >r K°C A°}
= wuerX:7(U)>rUC A}
= qlInt,.(A°).

(2) It is similar to the proof of (1). O

Lemma 2.4. Let (X,7) be a FQTS. The statements are
hold:
(OIfT(A;) > rforeachi € J,then T (U;eg 4;) > 1
QU T*(A;) >rforeachi € J, T*(Nicg Ai) >

Proof. (1) For each i € J,
T (Uies Ai) > Nieg T(Ai) > 1.

(2) It follows from definition of fuzzy quasi cotopol-
ogy. O

if T(4;) > r, then

From Lemma 2.4, the next theorem is easily obtained.

Theorem 2.5. Let (X,7) be aFGTS and A € IX. Then
(1) Ais fuzzy r-quasi open iff A = gInt,(A).
(2) A is fuzzy r-quasi closed iff A = qCl,.(A).

Theorem 2.6. Let (X,7) be a FQTS and A, B € I¥.
Then

(1) gInt,(gInt,.(A)) = qInt,(A).

2 gOlr(qCZT (A)>) = quv(A)

Proof. It follows from Theorem 2.5. U

Definition 2.7. Let f : (X,7;) — (Y, 73) be a mapping
on FQTS’s. Then f is said to be fuzzy r-quasi continuous
if for every A € IV, we have

To(A) > r = Ti(f~1(A) > .
Theorem 2.8. Let (X,77) and (Y, 73) be FQTS’s. Then
the following are equivalent:

(1) f is fuzzy r-quasi continuous.

(2) For every fuzzy r-quasi open set AinY, f~
fuzzy r-quasi open in X.

3 T(B) > 1= T"(f~

(4) For every fuzzy r-quasi closed set Ain Y, f
is fuzzy r-quasi closed in X.

(5) f(qClL,.(A)) C qClL.(f(A) for A € IX,

6) qCL.(f~1(B)) C f~1(qCl.(B)) for B € IV

(1) f~Y(qInt,(B)) C qgInt,.(f~(B)) for B I¥.

Proof. (1) = (2) Let A be a fuzzy r-quasi open set.
Then 75(A) > r and so by fuzzy r-quasi continuity,
T1(f~1(A)) > r. Hence f~1(A) is fuzzy r-quasi open.

(2)= 3)For B € I, if T,"(B) > r, then T3(B°) >
r, so B¢ is fuzzy r-quasi open. By (2), f~1(B¢) is fuzzy
r-quasi open, and this implies

Ti(f1(B9)) ~(B)))
So 1" (f~
(3) = (4) Obvious.

L(A)is

YB))>rforBelI¥.
“H(4)

=T((f “i(B)) =

YB)) >r.

=T"(f

(4)= (5) For A € IX,

fHClLf(A) = fTUN{Fel”:f(A)CF,

F is fuzzy r-quasi closed}]
= n{ffY(F)eIl*: AC fTYF),
f~Y(F) is fuzzy r-quasi closed}.
Thus from definition of operator of closure on a
FQTS, qCL(A) C f~(qClf(4)). So f(¢Cl,(A)) C
qCl, f(A).

(5) = (6) Obvious.
(6) = (7) Obvious.

(7) = (1) For B € I, if T5(B) > r, then B is fuzzy
r-quasi open, and
J7UB) = £ NIt (B)) € qlnt, (7 (B).
This implies f~'(B) is fuzzy r-quasi open, that is,
Ti(f~Y(B)) > r. Hence f is fuzzy r-quasi continu-
ous. O
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Definition 2.9. Let f : (X,7;) — (Y,72) be a mapping
on FQTS’s. Then f is said to be fuzzy r-quasi open if for
every fuzzy r-quasi open set A in X, f(A) is fuzzy r-quasi
openinY.

Theorem 2.10. Let (X, 7;) and (Y, 72) be FQTS’s. Then
the following are equivalent:

(1) f is fuzzy r-quasi open.

Q) For A € I*, T1(A) > r = T2(f(A)) > r.

(3) f(gInt,(A)) C qInt,.(f(A)) for A € I'X.

@ qInt.(f~1(B)) C f~Y(qInt.(B)) for B € IY.

Proof. (1) & (2) It is obvious from definition of fuzzy r-
quasi open set.

(1)= (3)For A € I, qInt,(A) is fuzzy r-quasi open.
Since f is fuzzy r-quasi open, f(qInt,(A)) is fuzzy r-
quasi open. So

faInt,(A)) = qlnt,.(f(alnt,(A))) C qInt,(f(A)).

(3) = (4) Obvious.

(4) = (1) Let A be a fuzzy r-quasi open set. Then from
(4), it follows

aInt,(A) € qInt, (f7'(f(A)) € f~ (aInt,(f(A))).

Since A = gInt,(A), we have f(A) C qInt, (f(A)), and
hence from Theorem 2.5, f(A) is fuzzy r-quasi open. [

Definition 2.11. Let f : (X,77) — (Y, 72) be a mapping
on FQTS’s. Then f is said to be fuzzy r-quasi closed if
for every fuzzy r-quasi closed set A in X, f(A) is fuzzy
r-quasi closed in Y.

Theorem 2.12. Let (X, 77) and (Y, 72) be FQTS’s. Then
the following are equivalent:

(1) f is fuzzy r-quasi closed.

@ For A€ I*X, T1*(A) > r = " (f(A) >r.

(3) qCL.(f(A)) C f(qCl,(A)) for A € IX.

Proof. (1) < (2) Obvious.
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(1) = (3) For A € IX, gCl,.(A) is fuzzy r-quasi
closed. Since f is fuzzy r-quasi closed, f(qCl.(A)) is
fuzzy r-quasi closed. So

(3) = (1) Let A be a fuzzy r-quasi closed set. Then
from (3) and ¢qCl,.(A) = A,

qCl-(f(A)) € f(qClr(A)) = f(A).

Thus f(A) is fuzzy r-quasi closed. O
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