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Abstract

In this paper, we give definitions of compatible mappings of type(I) and (II) in intuitionistic fuzzy metric space
and obtain common fixed point theorem and example under the conditions of compatible mappings of type(I) and (II)
in complete intuitionistic fuzzy metric space. Our research generalize, extend and improve the results given by many
authors.
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1. Introduction

Fang[4], Kaleva and Seikkala[5], Kramosil and
Michalek[6] have introduced the concept of fuzzy metric
space for each different methods, and some authors have
been improved generalized and extended several properties
in this space. Cho et.al.[2], Turkoglu et.al.[18] and Sharma
et.al.[17] studied this concept of compatible mappings of
type(α) and type(β) in fuzzy metric space. Cho et.al.[3]
introduced the concept of compatible mapping type(I) and
(II) in fuzzy metric spaces.

Recently, Park[7] and Park et.al.[14] defined the intu-
itionistic fuzzy metric space. Many authors([8], [9], [11],
[12], [13] etc) obtained a fixed point theorems in this space.
Also, Park[10], Park et.al.[15] introduced the concept of
compatible mappings of type(α) and type(β), and obtained
common fixed point theorems in intuitionistic fuzzy metric
space. Furthermore, Alaca et.al.[1] obtained some results
on this spaces.

In this paper, we give definitions of compatible map-
pings of type(I) and (II) in intuitionistic fuzzy metric space
and obtain common fixed point theorem and example under
the conditions of compatible mappings of type(I) and (II)
in complete intuitionistic fuzzy metric space with different
method of Alaca et.al.[1]. Our research generalize, extend
and improve the results given by many authors.

2. Preliminaries

Throughout this paper, N denote the set of all positive
integers. Now, we begin with some definitions, properties
in intuitionistic fuzzy metric space as following:

Let us recall(see [16]) that a continuous t−norm is a
operation ∗ : [0, 1] × [0, 1] → [0, 1] which satisfies the
following conditions: (a)∗ is commutative and associative,
(b)∗ is continuous, (c)a∗1 = a for all a ∈ [0, 1], (d)a∗ b ≤
c ∗ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]). Also,
a continuous t−conorm is a operation � : [0, 1] × [0, 1] →
[0, 1] which satisfies the following conditions: (a)� is com-
mutative and associative, (b)� is continuous, (c)a � 0 = a
for all a ∈ [0, 1], (d)a�b ≥ c�d whenever a ≤ c and b ≤ d
(a, b, c, d ∈ [0, 1]).

Also, let us recall (see [7]) that the following conditions
are satisfied: (a)For any r1, r2 ∈ (0, 1) with r1 > r2, there
exist r3, r4 ∈ (0, 1) such that r1 ∗r3 ≥ r2 and r4 �r2 ≤ r1;
(b)For any r5 ∈ (0, 1), there exist r6, r7 ∈ (0, 1) such that
r6 ∗ r6 ≥ r5 and r7 � r7 ≤ r5.

Definition 2.1. ([14])The 5−tuple (X,M,N, ∗, �) is said
to be an intuitionistic fuzzy metric space ifX is an arbitrary
set, ∗ is a continuous t−norm, � is a continuous t−conorm
and M,N are fuzzy sets on X2 × (0,∞) satisfying the
following conditions; for all x, y, z ∈ X , such that

(a)M(x, y, t) > 0,
(b)M(x, y, t) = 1⇐⇒ x = y,
(c)M(x, y, t) = M(y, x, t),
(d)M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(e)M(x, y, ·) : (0,∞)→ (0, 1] is continuous,
(f)N(x, y, t) > 0,
(g)N(x, y, t) = 0⇐⇒ x = y,
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(h)N(x, y, t) = N(y, x, t),
(i)N(x, y, t) �N(y, z, s) ≥ N(x, z, t+ s),
(j)N(x, y, ·) : (0,∞)→ (0, 1] is continuous.
Note that (M,N) is called an intuitionistic fuzzy metric

on X . The functions M(x, y, t) and N(x, y, t) denote the
degree of nearness and the degree of non-nearness between
x and y with respect to t, respectively.

Let X be an intuitionistic fuzzy metric space. For any
t > 0, the open ball B(x, r, t) with center x ∈ X and ra-
dius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1−r, N(x, y, t) < r}

Let X be an intuitionistic fuzzy metric space. Let τ be
the set of all A ⊂ X with x ∈ A if and only if there
exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.
Then τ is a topology on X(induced by the intuitionistic
fuzzy metric (M,N)). A sequence {xn} ⊂ X converges
to x if and only if M(xn, x, t) → 1, N(xn, x, t) → 0 as
n → ∞, for all t > 0. It is called a Cauchy sequence
if for any 0 < ε < 1 and t > 0, there exists n0 ∈ N
such that M(xn, xm, t) > 1 − ε, N(xn, xm, t) < ε for
any m,n ≥ n0. The intuitionistic fuzzy metric space X
is said to be complete if every Cauchy sequence is conver-
gent. A subset A of X is said to be F-bounded if there
exists t > 0 and 0 < r < 1 such that M(x, y, t) > 1 − r,
N(x, y, t) < r for all x, y ∈ A. The following lemma is
necessary for Lemma 2.3.

Lemma 2.2. Let X be an intuitionistic fuzzy metric space.
If we define Er : X2 → R+ ∪ {0} by Er(x, y) = inf{t >
0 : M(x, y, t) > 1 − r,N(x, y, t) < r} for all r ∈ (0, 1)
and x, y ∈ X . Then we have

(a)For all λ ∈ (0, 1), there exists r ∈ (0, 1) such
that Eλ(x1, xn) ≤ Er(x1, x2) + Er(x2, x3) + · · · +
Er(xn−1, xn) for all x1, x2, · · · , xn ∈ X .

(b){xn}n∈N is convergent in intuitionistic fuzzy metric
space X . if and only if Er(xn, x)→ 0. Also, {xn}n∈N is
a Cauchy sequence iff it is a Cauchy sequence with Er.

Proof. (a)For any λ ∈ (0, 1), we can find a r ∈ (0, 1) such
that (1−r)∗(1−r)∗· · ·∗(1−r) ≥ 1−λ, r�r�· · ·�r ≤ λ
and so we have by triangular inequality,

M(x1, xn, Er(x1, x2) + · · ·+ Er(xn−1, xn) + nδ)
≥M(x1, x2, Er(x1, x2) + δ) ∗
· · · ∗M(x1n− 1, xn, Er(xn−1, xn) + δ)

≥ (1− r) ∗ (1− r) ∗ · · · ∗ (1− r) ≥ 1− λ,
N(x1, xn, Er(x1, x2) + · · ·+ Er(xn−1, xn) + nδ)
≤ N(x1, x2, Er(x1, x2) + δ) �

· · · �N(xn−1, xn, Er(xn−1, xn) + δ)
≤ r � r � · · · � r ≤ λ

for all δ > 0 which implies that Eλ(x1, xn) ≤
Er(x1, x2)+Er(x2, x3)+ · · ·+Er(xn−1, xn)+nδ. Since

δ > 0 is arbitrary, we have Eλ(x1, xn) ≤ Er(x1, x2) +
Er(x2, x3) + · · ·+ Er(xn−1, xn).

(b)Since M,N are continuous and Er(x, y) = inf{t >
0 : M(x, y, t) > 1 − r, N(x, y, t) < r}, we have
M(xn, x, µ) > 1− r, N(xn, x, µ) < r iff Er(xn, x) < µ
for all µ > 0.

Lemma 2.3. Let X be an intuitionistic fuzzy metric space.
If a sequence {xn} ⊂ X is such that for any n ∈ N,

M(xn, xn+1, t) ≥M(x0, x1, k
nt),

N(xn, xn+1, t) ≤ N(x0, x1, k
nt)

for all k > 1, then the sequence {xn} ⊂ X is a Cauchy
sequence.

Proof. For all r ∈ (0, 1) and xn, xn+1 ∈ X , we have for
all t > 0,

Er(xn+1, xn)
= inf{t : M(xn+1, xn, t) > 1− r, N(xn+1, xn, t) < r}
≤ inf{t : M(x0, x1, k

nt) > 1− r, N(x0, x1, k
nt) < r}

= inf{ t
kn

: M(x0, x1, t) > 1− r, N(x0, x1, t) < r}

=
1
kn

inf{t : M(x0, x1, t) > 1− r, N(x0, x1, t) < r}

=
1
kn
Er(x0, x1).

By Lemma 2.2, for all λ ∈ (0, 1), there exists r ∈ (0, 1)
such that

Er(xn, xm)
≤ Er(xn, xn+1) + · · ·+ Er(xm−1, xm)

≤ 1
kn
Er(x0, x1) + · · ·+ 1

km−1
Er(x0, x1)

= Er(x0, x1)
m−1∑
j=n

1
kj
→ 0.

Hence the sequence {xn} is a Cauchy sequence in X .

3. Some Properties of Compatible Mappings

Definition 3.1. [12]Let A,B be mappings from an intu-
itionistic fuzzy metric space X into itself. Then the map-
pings A and B are said to be compatible if for all t > 0,

limn→∞M(ABxn, BAxn, t) = 1,
limn→∞N(ABxn, BAxn, t) = 0

whenever {xn} ⊂ X such that limn→∞Axn =
limn→∞Bxn = x for some x ∈ X .

Definition 3.2. [12]Let A,B be mappings from an intu-
itionistic fuzzy metric space X into itself. Then the map-
pings are said to be weak-compatible if Ax = Bx implies
ABx = BAx.
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Remark 3.3. Let (A,B) be pair of self mappings of intu-
itionistic fuzzy metric spaceX . Then (A,B) is commuting
implies (A,B) is compatible. Also, (A,B) is compatible
implies (A,B) is weak-compatible but the converse is not
true.

Example 3.4. Let (X, d) be the metric space with X =
[0, 2]. Denote a ∗ b = ab and a � b = max{a, b} for all
a, b ∈ [0, 1] and let Md, Nd be fuzzy sets on X2 × (0,∞)
defined as follows :

Md(x, y, t) =
t

t+ d(x, y)
, Nd(x, y, t) =

d(x, y)
t+ d(x, y)

.

Then (Md, Nd) is an intuitionistic fuzzy metric on X and
(X,Md, Nd, ∗, �) is an intuitionistic fuzzy metric space.
Define self mappings A,B on X by

A(X) =

 0 if 0 ≤ x ≤ 1
x

2
if 1 < x ≤ 2

B(X) =

 2x if x = 1
x+ 3

5
otherwise

.

Then A1 = B1 = 2. Also, AB1 = BA1 = 1 and
AB2 = BA2 = 2. Thus (A,B) is weak compatible.
Again, define Axn = 1 − 1

4n and Bxn = 1 − 1
10n . Then

limn→∞Axn = 1, limn→∞Bxn = 1, but (A,B) is not
compatible.

Definition 3.5. [10]Let A,B be mappings from intuition-
istic fuzzy metric space X into itself. Then the mappings
A,B are said to be compatible of type(α) if for all t > 0,

lim
n→∞

M(ABxn, BBxn, t) = 1,

lim
n→∞

N(ABxn, BBxn, t) = 0

and

lim
n→∞

M(BAxn, AAxn, t) = 1,

lim
n→∞

N(BAxn, AAxn, t) = 0

whenever {xn} is a sequence in X such that
limn→∞Axn = limn→∞Bxn = x ∈ X .

Definition 3.6. [10]Let A,B be mappings from intuition-
istic fuzzy metric space X into itself. Then the mappings
A,B are said to be compatible of type(β) if for all t > 0,

lim
n→∞

M(AAxn, BBxn, t) = 1,

lim
n→∞

N(AAxn, BBxn, t) = 0

whenever {xn} is a sequence in X such that
limn→∞Axn = limn→∞Bxn = x ∈ X .

Proposition 3.7. Let X be an intuitionistic fuzzy metric
space with t ∗ t ≥ t, t � t ≤ t for all t ∈ [0, 1] and A,B be
continuous mappings from X into itself. Then

(a)A and B are compatible if and only if they are com-
patible of type(α)

(b)A and B are compatible if and only if they are com-
patible of type(β)

(c)A andB are compatible of type(α) if and only if they
are compatible of type(β)

Definition 3.8. Let A,B be mappings from intuitionistic
fuzzy metric space X into itself. Then the mappings A,B
are said to be compatible of type(I) if for all t > 0,

lim
n→∞

M(ABxn, x, t) ≤M(Bx, x, t),

lim
n→∞

N(ABxn, x, t) ≥ N(Bx, x, t)

whenever {xn} is a sequence in X such that
limn→∞Axn = limn→∞Bxn = x ∈ X .

Definition 3.9. Let A,B be mappings from intuitionistic
fuzzy metric space X into itself. Then the mappings A,B
are said to be compatible of type(II) if and only if B,A are
said to be compatible of type(I).

Proposition 3.10. Let X be an intuitionistic fuzzy
metric space. Suppose that A,B are compatible of
type(I)(respectively, (II)) and Ax = Bx for some x ∈ X .
Then for all t > 0,

M(Ax,BBx, t) ≥M(Ax,ABx, t),
N(Ax,BBx, t) ≤ N(Ax,ABx, t)

(respectively, M(Bx,AAx, t) ≥ M(Bx,BAx, t),
N(Bx,AAx, t) ≤ N(Bx,BAx, t)).

4. Main Results

Theorem 4.1. LetX be an intuitionistic fuzzy metric space
with t ∗ t ≥ t and t � t ≤ t for all t ∈ [0, 1]. Let A,B, S
and T be self mappings of a complete intuitionistic fuzzy
metric space satisfying

(a)A(X) ⊆ T (X), B(X) ⊆ S(X),
(b)There exists a constant k ∈ (0, 1

2 ) such that for all
x, y ∈ X , α ∈ (0, 2) and t > 0,

M(Ax,By, kt)
≥ min{M(Sx, Ty, t),M(Ax, Sx, t),M(By, Ty, t),

M(Ax, Ty, αt),M(By, Sx, (2− α)t)},
N(Ax,By, kt)
≤ max{N(Sx, Ty, t), N(Ax, Sx, t), N(By, Ty, t),

N(Ax, Ty, αt), N(By, Sx, (2− α)t)}.

If the mappings A,B, S and T satisfy any one of the fol-
lowing conditions:
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(c)The pair (A,S) and (B, T ) are compatible of type(I)
and S or T is continuous.

(d)The pair (A,S) and (B, T ) are compatible of
type(II) and A or B is continuous.

Then A,B, S and T have a unique common fixed point
in X .

Proof. Let x0 ∈ X be arbitrary point. Since A(X) ⊆
T (X) andB(X) ⊆ S(X), there exist x1, x2 ∈ X such that
Ax0 = Tx1, Bx1 = Sx2. We can construct the sequences
{xn}, {yn} ⊂ X such that y2n+1 = Bx2n+1 = Sx2n+2,
y2n = Ax2n = Tx2n+1 for n = 0, 1, 2, · · · . Then by α =
1− q and q ∈ ( 1

2 , 1], using (b) with x = x2n, y = x2n+1,

M(y2n, y2n+1, kt)
= M(Ax2n, Bx2n+1, kt)
≥ min{M(Sx2n, Tx2n+1, t),M(Ax2n, Sx2n, t),
M(Bx2n+1, Tx2n+1, t),M(Ax2n, Tx2n+1, (1− q)t),
M(Bx2n+1, Sx2n, (1 + q)t)}

= · · · · · ·
≥M(y2n, y2n+1, qt)
· · · · · ·

≥M(y0, y1,
q

kn
t),

N(y2n, y2n+1, kt)
= N(Ax2n, Bx2n+1, kt)
≤ max{N(Sx2n, Tx2n+1, t), N(Ax2n, Sx2n, t),
N(Bx2n+1, Tx2n+1, t), N(Ax2n, Tx2n+1, (1− q)t),
N(Bx2n+1, Sx2n, (1 + q)t)}

= · · · · · ·
≤ N(y2n, y2n+1, qt)
· · · · · ·

≤ N(y0, y1,
q

kn
t).

Now, setting 2n = m and for any p ∈ N ,

M(ym, ym+p, kt)

≥M(ym, ym+1,
t

p
) ∗ · · · ∗M(ym+p−1, ym+p,

t

p
),

N(ym, ym+p, kt)

≤ N(ym, ym+1,
t

p
) � · · · �N(ym+p−1, ym+p,

t

p
).

Hence by Lemma 2.3, {yn} is a Cauchy sequence in X
which is complete. Let limn→∞ yn = z. Then we have

lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Tx2n+1

= lim
n→∞

y2n+1 = lim
n→∞

Bx2n+1

= lim
n→∞

Sx2n+2 = z.

Suppose that the condition (c) is satisfied and T is continu-
ous. Then we have limn→∞ TTx2n+1 = Tz and

lim
n→∞

M(BTx2n+1, z, t) ≤M(Tz, z, t),

lim
n→∞

N(BTx2n+1, z, t) ≥ N(Tz, z, t).

Now, for α = 1, letting x = x2n, y = Tx2n+1 in
condition (b), we obtain

M(Ax2n, BTx2n+1, kt)
≥ min{M(Sx2n, TTx2n+1, t),M(Ax2n, S2n, t),
M(BTx2n+1, TTx2n+1, t),M(Ax2n, TTx2n+1, t),
M(BTx2n+1, Sx2n, t)},

N(Ax2n, BTx2n+1, kt)
≤ max{N(Sx2n, TTx2n+1, t), N(Ax2n, S2n, t),
N(BTx2n+1, TTx2n+1, t), N(Ax2n, TTx2n+1, t),
N(BTx2n+1, Sx2n, t)}.

Letting n→∞, since

lim
n→∞

M(BTx2n+1, T z, t) ≥ lim
n→∞

M(BTx2n+1, z,
t

2
),

lim
n→∞

N(BTx2n+1, T z, t) ≤ lim
n→∞

N(BTx2n+1, z,
t

2
).

Hence

M(z, lim
n→∞

BTx2n+1, kt) > M(z, lim
n→∞

BTx2n+1,
t

2
),

N(z, lim
n→∞

BTx2n+1, kt) < N(z, lim
n→∞

BTx2n+1,
t

2
).

which is a contradiction for compatible of type(I). It fol-
lows that limn→∞BTx2n+1 = z. Therefore, we have

1 = lim
n→∞

M(z,BTx2n+1, kt) ≤M(Tz, z, t),

0 = lim
n→∞

N(z,BTx2n+1, kt) ≥ N(Tz, z, t).

Hence Tz = z.
Again, letting x = x2n and y = z in condition (b), we

have for all α = 1,

M(Ax2n, Bz, kt)
≥ min{M(Sx2n, T z, t),M(Ax2n, Sx2n, t),
M(Bz, Tz, t),M(Ax2n, T z, t),M(Bz, Sx2n, t)},

N(Ax2n, Bz, kt)
≤ max{N(Sx2n, T z, t), N(Ax2n, Sx2n, t),
N(Bz, Tz, t), N(Ax2n, T z, t), N(Bz, Sx2n, t)}

and so we have for n→∞,

M(Bz, z, kt) > M(Bz, z, t),
N(Bz, z, kt) < N(Bz, z, t)

which implies that Bz = z.
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Also, since B(X) ⊆ S(X), there exist w ∈ X such
that Sw = z = Bz. So, we have for α = 1,

M(Aw,Bz, kt)
≥ min{M(Sw, Tz, t),M(Aw,Sw, t),M(Bz, Tz, t),

M(Aw, Tz, t),M(Bz, Sw, t)},
N(Aw,Bz, kt)
≤ max{N(Sw, Tz, t), N(Aw,Sw, t), N(Bz, Tz, t),

N(Aw, Tz, t), N(Bz, Sw, t)}.

Therefore

M(Aw, z, kt) > M(z,Aw, t),
N(Aw, z, kt) < N(z,Aw, t)

which implies that Aw = z. Since (A,S) is compatible of
type(I) and Aw = Sw = z, we have by Proposition 3.10,

M(Aw,SSw, t) ≥M(Aw,ASw, t),
N(Aw,SSw, t) ≤ N(Aw,ASw, t)

and so

M(z, Sz, t) ≥M(z,Az, t),
N(z, Sz, t) ≤ N(z,Az, t).

Also, we have for α = 1,

M(Az,Bz, kt)
≥ min{M(Sz, Tz, t),M(Az, Sz, t),M(Bz, Tz, t),
M(Az, Tz, t),M(Bz, Sz, t)},

N(Az,Bz, kt)
≤ max{N(Sz, Tz, t), N(Az, Sz, t), N(Bz, Tz, t),
N(Az, Tz, t), N(Bz, Sz, t)}}.

Since

M(Az, Sz, t) ≥M(z,Az,
t

2
),

N(Az, Sz, t) ≤ N(z,Az,
t

2
),

therefore

M(Az, z, kt)

≥ min{M(Az, z,
t

2
),M(Az, z,

t

2
),M(Az, z,

t

2
),

M(z,Az,
t

2
),M(z,Az,

t

2
)}

≥M(z,Az,
t

2
),

N(Az, z, kt)

≤ max{N(Az, z,
t

2
), N(Az, z,

t

2
), N(Az, z,

t

2
),

N(z,Az,
t

2
), N(z,Az,

t

2
)}

≤ N(z,Az,
t

2
).

So Az = z. Thus Az = Bz = Sz = Tz = z and z is a
common fixed point of the self-mappings A,B, S and T .

Furthermore, if u be another fixed point of A,B, S and
T , then we have for α = 1,

M(z, u, kt) = M(Az,Bu, kt)
≥ min{M(Sz, Tu, t),M(Az, Sz, t),M(Bu, Tu, t),

M(Az, Tu, t),M(Bu, Sz, t)},
N(z, u, kt) = N(Az,Bu, kt)
≤ max{N(Sz, Tu, t), N(Az, Sz, t), N(Bu, Tu, t),

N(Az, Tu, t), N(Bu, Sz, t)}.

Therefore

M(z, u, kt) ≥M(z, u, t),
N(z, u, kt) ≤ N(z, u, t).

Hence z = u.

Example 4.2. Let (X, d) be the metric space with X =
[0, 1]. Denote a∗ b = min{a, b} and a� b = max{a, b} for
all a, b ∈ [0, 1] and letMd, Nd be fuzzy sets onX2×(0,∞)
defined as follows :

Md(x, y, t) =
t

t+ d(x, y)
,

Nd(x, y, t) =
d(x, y)

t+ d(x, y)
.

Then (Md, Nd) is an intuitionistic fuzzy metric on X and
(X,Md, Nd, ∗, �) is an intuitionistic fuzzy metric space.
Define self mappings A,B, S and T by

A(X) = 1
B(X) = 1

S(X) =

{
1 if x is rational
0 x is irrational

,

T (X) = x+1
2 .

If we define {xn} ⊂ X by xn = 1 − 1
n , then we have for

limn→∞Axn = limn→∞ Sxn = 1,

lim
n→∞

M(SAxn, 1, t) ≤M(A1, 1, t) = 1,

lim
n→∞

N(SAxn, 1, t) ≥ N(A1, 1, t) = 0.

Also, for limn→∞Bxn = limn→∞ Txn = 1,

lim
n→∞

M(TBxn, 1, t) ≤M(B1, 1, t) = 1,

lim
n→∞

N(TBxn, 1, t) ≥ N(B1, 1, t) = 0.

Therefore, (A,S) and (B, T ) are compatible of type(II)
and A,B are continuous mappings. Then all the condi-
tions of Theorem 4.1 are satisfied and 1 is a unique com-
mon fixed point of A,B, S and T on X .
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