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Abstract

In this paper, we investigate the existence and calculation of the expression of periodic solutions for fuzzy differential
equations with three types of forcing terms, by using Hukuhara derivative. In particular, Theorems 3.2, 4.2 and 5.2 are
the results of existences of periodic solutions for fuzzy differential equations �,a andb, respectively. These results will
help us to study phenomena with periodic peculiarity such as wave or sound.
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1. Introduction

The concept of fuzzy set was initiated by Zadeh via
membership function in 1965. Many authors have stud-
ied the fuzzy equations. Fuzzy differential equations are
a field of increasing interest, due to their applicability to
the analysis of phenomena where imprecision is inherent.
Diamond and Kloeden [2] proved the fuzzy optimal con-
trol for fuzzy system. Nieto et al. [9] proved the exis-
tence of solution for the initial value problems associated
to the fuzzy equations. Kwun et al. [4] proved nonlocal
controllability for the semilinear fuzzy integrodifferential
equations in n-dimensional fuzzy vector space. Our objec-
tive is also throughout the fuzzy systems, the situation is
vague and uncertain to enable them to solve mathematical
problems. But periodicity of solutions in the fuzzy case
is difficult to study, due to the behavior of the solutions
of fuzzy differential equations. So in this work, we were
to be used in various fields as we show that existence of
periodic solutions for fuzzy differential equations. Park et
al. [6] studied for the almost periodic solutions of fuzzy
systems. Bede and Gal [14] dealt with the almost periodic
fuzzy-number-valued functions. Rosana Rodŕiguez-López
[13] proved the periodic boundary value problems for im-
pulsive fuzzy differential equations.

In this paper, we study the existence of periodic so-
lutions for the following fuzzy differential equations with
three type forcing term:

{
u′(t) = M(t)u(t) + ∗, t ∈ I = [0, T ],

(1.1)
u(0) = u0,

where T > 0, u0 ∈ E1, M : I → E1, u : I → E1 and
∗ are first type f(t), second type f(t, u(t)) and last type
f(t, u(t) t

,
∫

g
0

(t, s, u(s))ds). We calculate the expression
of the periodic solutions for fuzzy differential equations by
using Hukuhara derivative.

2. Preliminaries

We consider E1 the space of one-dimensional fuzzy
numbers u : R → [0, 1], satisfying the following prop-
erties:

1. u is normal, i.e., there exists an u0 ∈ R such that
u(to) = 1;

2. u is fuzzy convex, i.e., u(λt + (1 − λ)s) ≥
min{u(t), u(s)} for any t, s ∈ R, 0 ≤ λ ≤ 1;

3. u(t) is upper semi-continuous, i.e., u(t0) ≥
limk u(t→∞ k) for any tk ∈ R (k = 0, 1, 2, · · · ),
tk → t0;

4. [u]0 is compact.

The level sets of u, [u]α = {t ∈ R : u(t) ≥ α}, α ∈
(0, 1], and [u]0 are nonempty compact convex sets in R
([2]).

Definition 2.1. [15] Let u : I E1 be differentiable. De-
note uα α

→
(t) = [ul (t), uα

r (t)], α ∈ [0, 1]. Then uα
l and uα

r

are differentiable and [u′(t)]α = [u′αl (t), u′αr (t)].

Definition 2.2. The metric dH on E1 is defined by

dH([u]α, [v]α) = max{|uα
l − vα

l |, |uα
r − vα

r |}.Corresponding Author : Jin Han Park (jihpark@pknu.ac.kr)
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Definition 2.3. [2] The supremum metric d∞ on E1 is
defined by

d∞(u, v) = sup
α∈[0,1]

dH([u]α, [v]α),

for all u, v ∈ E1 and is obviously a metric on E1.

Definition 2.4. The supremum metric H1 on C1(I, E1)
is defined by

H1(u, v) = sup
t∈[0,T ]

d∞(u(t), v(t)),

for all u, v ∈ E1.

Definition 2.5. [2] A mapping u : I → E1 is
Hukuhara differentiable at t ∈ I if for some h0 > 0
the Hukuhara differences

u(t + ∆t)−H u(t), u(t)−H u(t−∆t)

exist in E1 for all 0 < t < h and if there exists an
u′(t) ∈ E1 such that

lim
∆t→0+

d∞((u(t + ∆t)−H u(t))/∆t, u′(t)) = 0

and

lim
∆t→0+

d∞((u(t)−H u(t−∆t))/∆t, u′(t)) = 0,

here u′(t) is called the Hukuhara derivative of u at t.
In view of the definition of the metric d∞, all the level set
mappings [u(·)]α are Hukuhara differentiable at t with
Hukuhara derivatives [u′(t)]α for each α ∈ [0, 1] when
u : I → E1 is Hukuhara differentiable at t with Hukuhara
derivative u′(t).

3. Existence of Periodic Solutions for Fuzzy
Differential Equations I

In this section we study the existence of fuzzy strong
solutions and periodic solutions for the following problem:

(3.1)
{

u′(t) = M(t)u(t) + f(t), t ∈ I = [0, T ],
u(0) = u0,

where T > 0, u0 ∈ E1, M : I → E1, u : I → E1 and
f : I → E1 are continuous.

Definition 3.1. [3] The fuzzy process u : I → E1 is a
fuzzy solution of equation (3.1) if and only if

(u′αl )(t) = min{Mα
i (t)uα

j (t) + fα
l (t), i, j = l, r},

(u′αr )(t) = max{Mα
i (t)uα

j (t) + fα
r (t), i, j = l, r},

(uα
l )(0) = uα

0l, (u
α
r )(0) = uα

0r.

Theorem 3.2. For every u0 ∈ E1, problem (3.1) has a
unique fuzzy solution u ∈ C(I, E1).

Proof. Assume that the value u0 and M(t), f(t) are posi-
tive fuzzy numbers. From the definition of fuzzy solution,

(u′αl )(t) = Mα
l (t)uα

l (t) + fα
l (t),

(u′αr )(t) = Mα
r (t)uα

r (t) + fα
r (t)

and

(uα
l )(t) = uα

0le
∫ t
0 Mα

l (s)ds +
∫ t

0

e
∫ t

s
Mα

l (τ)dτfα
l (s)ds,

(uα
r )(t) = uα

0re
∫ t
0 Mα

r (s)ds +
∫ t

0

e
∫ t

s
Mα

r (τ)dτfα
r (s)ds.

Let S(t) is fuzzy number

[S(t)]α = [Sα
l (t), Sα

r (t)]

= [e
∫ t
0 Mα

l (s)ds, e
∫ t
0 Mα

r (s)ds]

and Sα
i (t) (i = l, r) is continuous. That is, there exists

a constant c > 0 such that |Sα
i (t)| ≤ c for all t ∈ I .

The equation (3.1) is related to the following fuzzy inte-
gral equations;

(3.2) u(t) = u0S(t) +
∫ t

0

S(t− s)f(s)ds.

For each ρ(t) ∈ C1(I, E1), t ∈ I . Define

(Πρ)(t) = u0S(t) +
∫ t

0

S(t− s)f(s)ds.

Thus, (Πρ)(t) : I → C1(I, E1) is continuous, and Π :
C1(I, E1) → C1(I, E1). It is obvious that fixed point of
Π is solution for the problem (3.1). That is, the (3.1) has a
unique fuzzy solution u ∈ C(I, E1).

Now we show that u(t) is Hukuhara differentiable.
Let’s t ∈ I, h > 0, for every α ∈ [0, 1],

[u(t + h)−H u(t)]α

h

=
1
h

[
uα

0lS
α
l (t + h) +

∫ t+h

0

Sα
l (t + h− s)fα

l (s)ds

−uα
0lS

α
l (t)−

∫ t

0

Sα
l (t− s)fα

l (s)ds,

uα
0rS

α
r (t + h) +

∫ t+h

0

Sα
r (t + h− s)fα

r (s)ds

−uα
0rS

α
r (t)−

∫ t

0

Sα
r (t− s)fα

r (s)ds
]
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=
1
h

[
uα

0lS
α
l (t)Sα

l (h)

+
∫ t+h

t

Sα
l (t + h− t)Sα

l (t− s)fα
l (s)ds

+
∫ t

0

Sα
l (t + h− t)Sα

l (t− s)fα
l (s)ds

−uα
0lS

α
l (t)−

∫ t

0

Sα
l (t− s)fα

l (s)ds,

uα
0rS

α
r (t)Sα

r (h)

+
∫ t+h

0

Sα
r (t + h− t)Sα

r (t− s)fα
r (s)ds

+
∫ t

0

Sα
r (t + h− t)Sα

r (t− s)fα
r (s)ds

−uα
0rS

α
r (t)−

∫ t

0

Sα
r (t− s)fα

r (s)ds
]

=
1
h

[
uα

0lS
α
l (t)(Sα

l (h)− 1)

+Sα
l (h)

∫ t+h

t

Sα
l (t− s)fα

l (s)ds

+
∫ t

0

Sα
l (t− s)fα

l (s)ds(Sα
l (h)− 1),

uα
0rS

α
r (t)(Sα

r (h)− 1)

+Sα
r (h)

∫ t+h

0

Sα
r (t− s)fα

r (s)ds

+
∫ t

0

Sα
r (t− s)fα

r (s)ds(Sα
r (h)− 1)

]
=

1
h

{
[uα

0lS
α
l (t)(Sα

l (h)− 1), uα
0rS

α
r (t)(Sα

r (h)− 1)]

+
[
Sα

l (h)
∫ t+h

t

Sα
l (t− s)fα

l (s)ds,

Sα
r (h)

∫ t+h

0

Sα
r (t− s)fα

r (s)ds
]

+
[ ∫ t

0

Sα
l (t− s)fα

l (s)ds(Sα
l (h)− 1),∫ t

0

Sα
r (t− s)fα

r (s)ds(Sα
r (h)− 1)

]}
.

The limits of these functions as h → 0+, respectively,

lim
h→0+

1
h

[uα
0lS

α
l (t)Sα

l (h)− 1), uα
0rS

α
r (t)(Sα

r (h)− 1)]

= [uα
0lM

α
l (t)Sα

l (t), uα
0rM

α
r (t)Sα

r (t)],

lim
h→0+

1
h

[
Sα

l (h)
∫ t+h

t

Sα
l (t− s)fα

l (s)ds,

Sα
r (h)

∫ t+h

0

Sα
r (t− s)fα

r (s)ds
]

= [fα
l (t), fα

r (t)],

lim
h→0+

1
h

[ ∫ t

0

Sα
l (t− s)fα

l (s)ds(Sα
l (h)− 1),∫ t

0

Sα
r (t− s)fα

r (s)ds(Sα
r (h)− 1)

]
=

[
Mα

l (t)
∫ t

0

Sα
l (t− s)fα

l (s)ds,

Mα
r (t)

∫ t

0

Sα
r (t− s)fα

r (s)ds
]
.

Therefore

lim
h→0+

[u(t + h)−H u(t)]α

h

=
[
uα

0lM
α
l (t)Sα

l (t) + fα
l (t)

+Mα
l (t)

∫ t

0

Sα
l (t− s)fα

l (s)ds,

uα
0rM

α
r (t)Sα

r (t) + fα
r (t)

+Mα
r (t)

∫ t

0

Sα
r (t− s)fα

r (s)ds
]

= [Mα
l (t)uα

l (t) + fα
l (t), Mα

r (t)uα
r (t) + fα

r (t)].

The same behavior can be checked for the left-sided
Hukuhara quotients

[u(t)−H u(t− h)]α

h
, h > 0.

This proves that

dH

([ [u(t + h)−H u(t)]α

h

]
,

[Mα
l (t)uα

l (t) + fα
l (t),Mα

r (t)uα
r (t) + fα

r (t)]
)

→ 0,

as h → 0+, uniformly in α, so that

d∞

(u(t + h)−H u(t)
h

, u′(t)
)
→ 0,

where, for t ∈ I, u′(t) given levelwise by

[u′(t)]α = [Mα
l (t)uα

l (t) + fα
l (t),Mα

r (t)uα
r (t) + fα

r (t)]

is a fuzzy number. Thus u(t) is fuzzy strong solution of
equation (3.1).

Now we study the existence of periodic solutions for
fuzzy differential equation (3.1). For this purpose, assume
that the following conditions hold.

(H1) For a constant T > 0, t ∈ I = [0, T ],

f(t + T ) = f(t), Pu0 = u(T ).
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And we define a map P along the solution in such a way
that, for u(·, φ) a solution of equation (3.1) with the initial
function φ,

(3.3) Pφ = uT (·, φ), φ ∈ C([0, T ], E1),

and then examine whether the map P has a fixed point. We
note that a fixed point of P gives rise to periodic solutions.
Because if Pφ = φ, then for the solution u(·) = u(·, φ)
with u0(·, φ) = φ, we can define

(3.4) y(t) = u(t + T ).

Now, for t ≥ 0, we can use the known formulas[10]

(3.5) S(0) = I, S(t + s) = S(t)S(s),

to obtain

y(t) = u(t + T )

= S(t + T )u0 +
∫ t+T

0

S(t + T − s)f(s)ds

= S(t)S(T )u0 +
∫ T

0

S(t)S(T − s)f(s)ds

+
∫ t+T

T

S(t + T − s)f(s)ds

= S(t)
[
S(T )u0 +

∫ T

0

S(T − s)f(s)ds
]

+
∫ t

0

S(t + T − s− T )f(s + T )ds

= S(t)u(T ) +
∫ t

0

S(t− s)f(s)ds

= S(t)u0 +
∫ t

0

S(t− s)f(s)ds.

This implies that y is also a solution and y0 = uT (φ) =
Pφ = φ. Then, the uniqueness implies that (u(t +
T ))y(t) = u(t), so that u(φ) is a periodic solution.

4. Existence of Periodic Solutions for Fuzzy
Differential Equations II

In this section we study the existence of fuzzy strong
solutions and periodic fuzzy solutions for the following
fuzzy differential equation:

(4.1)

 u′(t) = M(t)u(t) + f(t, u(t)),
t ∈ I = [0, T ],

u(0) = u0,

where T > 0, initial value u0 ∈ E1, fuzzy coefficient
M : I → E1, and f : I × E1 → E1 satisfies a global Lip-
schitz condition, i.e., there exists a finite constant k1 > 0
such that

dH([f(s, x(s))]α, [f(s, y(s))]α) ≤ k1dH([x(s)]α, [y(s)]α)

for all x(s), y(s) ∈ E1.

Definition 4.1. [3] The fuzzy process u : I → E1 is a
fuzzy solution of equation (4.1) if and only if

(u′αl )(t) = min{Mα
i (t)uα

j (t) + fα
l (t, uα

j (t)), },
(u′αr )(t) = max{Mα

i (t)uα
j (t) + fα

r (t, uα
j (t)), },

(uα
l )(0) = uα

0l, (u
α
r )(0) = uα

0r,

where i, j = l, r.

Theorem 4.2. For every u0 ∈ E1, problem (4.1) has a
unique fuzzy strong solution u ∈ C1(I, E1).

Proof. Assume that the value u0 and M(t), f(t) are posi-
tive fuzzy numbers. From the definition of fuzzy solution,

(u′αl )(t) = Mα
l (t)uα

l (t) + fα
l (t, uα

l (t)),

(u′αr )(t) = Mα
r (t)uα

r (t) + fα
r (t, uα

r (t))

and

(uα
l )(t) = uα

0le
∫ t
0 Mα

l (s)ds

+
∫ t

0

e
∫ t

s
Mα

l (τ)dτfα
l (s, uα

l (s))ds,

(uα
r )(t) = uα

0re
∫ t
0 Mα

r (s)ds

+
∫ t

0

e
∫ t

s
Mα

r (τ)dτfα
r (s, uα

r (s))ds.

The equation (4.1) is related to the following fuzzy integral
equations;

(4.2) u(t) = u0S(t) +
∫ t

0

S(t− s)f(s, u(s))ds

For each ξ(t) ∈ C1(I, E1), t ∈ I define

(Φξ)(t) = S(t)u0 +
∫ t

0

S(t− s)f(s, ξ(s))ds.

Thus, (Φξ)(t) : I → C1(I, E1) is continuous, and Φ :
C1(I, E1) → C1(I, E1). It is obvious that fixed point of
Φ is solution for the problem (4.1) [3]. That is, the (4.1)
has a unique fuzzy solution u ∈ C(I, E1).

Then, to be show u(t) is fuzzy strong solution, we show
that u(t) is Hukuhara differentiable. Let’s t ∈ I, h > 0, for
every α ∈ [0, 1],

[u(t + h)−H u(t)]α

h
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=
1
h

[
uα

0lS
α
l (t + h)

+
∫ t+h

0

Sα
l (t + h− s)fα

l (s, uα
l (s))ds

−uα
0lS

α
l (t)−

∫ t

0

Sα
l (t− s)fα

l (s, uα
l (s))ds,

uα
0rS

α
r (t + h)

+
∫ t+h

0

Sα
r (t + h− s)fα

r (s, uα
r (s))ds

−uα
0rS

α
r (t)−

∫ t

0

Sα
r (t− s)fα

r (s, uα
r (s))ds

]
=

1
h

[
uα

0lS
α
l (t)Sα

l (h)

+
∫ t+h

t

Sα
l (t + h− t)Sα

l (t− s)fα
l (s, uα

l (s))ds

+
∫ t

0

Sα
l (t + h− t)Sα

l (t− s)fα
l (s, uα

l (s))ds

−uα
0lS

α
l (t)−

∫ t

0

Sα
l (t− s)fα

l (s, uα
l (s))ds,

uα
0rS

α
r (t)Sα

r (h)

+
∫ t+h

0

Sα
r (t + h− t)Sα

r (t− s)fα
r (s, uα

r (s))ds

+
∫ t

0

Sα
r (t + h− t)Sα

r (t− s)fα
r (s, uα

r (s))ds

−uα
0rS

α
r (t)−

∫ t

0

Sα
r (t− s)fα

r (s, uα
r (s))ds

]
=

1
h

[
uα

0lS
α
l (t)(Sα

l (h)− 1)

+Sα
l (h)

∫ t+h

t

Sα
l (t− s)fα

l (s, uα
l (s))ds

+
∫ t

0

Sα
l (t− s)fα

l (s, uα
l (s))ds(Sα

l (h)− 1),

uα
0rS

α
r (t)(Sα

r (h)− 1)

+Sα
r (h)

∫ t+h

0

Sα
r (t− s)fα

r (s, uα
r (s))ds

+
∫ t

0

Sα
r (t− s)fα

r (s, uα
r (s))ds(Sα

r (h)− 1)
]

=
1
h

{
[uα

0lS
α
l (t)(Sα

l (h)− 1), uα
0rS

α
r (t)(Sα

r (h)− 1)]

+
[
Sα

l (h)
∫ t+h

t

Sα
l (t− s)fα

l (s, uα
l (s))ds,

Sα
r (h)

∫ t+h

0

Sα
r (t− s)fα

r (s, uα
r (s))ds

]
+

[ ∫ t

0

Sα
l (t− s)fα

l (s, uα
l (s))ds(Sα

l (h)− 1),∫ t

0

Sα
r (t− s)fα

r (s, uα
r (s))ds(Sα

r (h)− 1)
]}

.

The limits of these functions as h → 0+, respectively,

lim
h→0+

1
h

[uα
0lS

α
l (t)(Sα

l (h)− 1),

uα
0rS

α
r (t)(Sα

r (h)− 1)]
= [uα

0lM
α
l (t)Sα

l (t), uα
0rM

α
r (t)Sα

r (t)],

lim
h→0+

1
h

[
Sα

l (h)
∫ t+h

t

Sα
l (t− s)fα

l (s, uα
l (s))ds,

Sα
r (h)

∫ t+h

0

Sα
r (t− s)fα

r (s, uα
r (s))ds

]
= [fα

l (t, uα
l (t)), fα

r (t, uα
r (t)],

lim
h→0+

1
h

[ ∫ t

0

Sα
l (t− s)fα

l (s, uα
l (s))ds(Sα

l (h)− 1),∫ t

0

Sα
r (t− s)fα

r (s, uα
r (s))ds(Sα

r (h)− 1)
]

=
[
Mα

l (t)
∫ t

0

Sα
l (t− s)fα

l (s, uα
l (s))ds,

Mα
r (t)

∫ t

0

Sα
r (t− s)fα

r (s, uα
r (s))ds

]
Therefore

lim
h→0+

[u(t + h)−H u(t)]α

h

=
[
uα

0lM
α
l (t)Sα

l (t) + fα
l (t, uα

l (t))

+Mα
l (t)

∫ t

0

Sα
l (t− s)fα

l (s, uα
l (s))ds,

uα
0rM

α
r (t)Sα

r (t) + fα
r (t, uα

r (t))

+Mα
r (t)

∫ t

0

Sα
r (t− s)fα

r (s, uα
r (s))ds

]
= [Mα

l (t)uα
l (t) + fα

l (t, uα
l (t)),

Mα
r (t)uα

r (t) + fα
r (t, uα

r (t))].

The same behavior can be checked for the left-sided
Hukuhara quotients

[u(t)−H u(t− h)]α

h
, h > 0.

This proves that

dH

([ [u(t + h)−H u(t)]α

h

]
, [Mα

l (t)uα
l (t)

+fα
l (t, uα

l (t)),Mα
r (t)uα

r (t) + fα
r (t, uα

r (t))]
)

→ 0,

as h → 0+, uniformly in α, so that

d∞

(u(t + h)−H u(t)
h

, u′(t)
)
→ 0,
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where, for t ∈ I, u′(t) given levelwise by

[u′(t)]α = [Mα
l (t)uα

l (t) + fα
l (t, uα

l (t)),
Mα

r (t)uα
r (t) + fα

r (t, uα
r (t))]

is a fuzzy number. Thus u(t) is fuzzy strong solution of
equation (4.1).

Now we study the periodic solutions for the fuzzy dif-
ferential equation (4.1). For this purpose, assume that the
following conditions hold.

(H2) For a constant T > 0, t ∈ I = [0, T ],

f(t + T, x) = f(t, x), Pu0 = u(T ).

Then by (3.4)-(3.5) and (H2), the following to obtain

y(t) = u(t + T )

= S(t + T )u0 +
∫ t+T

0

S(t + T − s)f(s, u(s))ds

= S(t)S(T )u0 +
∫ T

0

S(t)S(T − s)f(s, u(s))ds

+
∫ t+T

T

S(t + T − s)f(s, u(s))ds

= S(t)
[
S(T )u0 +

∫ T

0

S(T − s)f(s, u(s))ds
]

+
∫ t

0

S(t + T − s− T )f(s + T, u(s + T ))ds

= S(t)u(T ) +
∫ t

0

S(t− s)f(s, u(s))ds

= S(t)u0 +
∫ t

0

S(t− s)f(s, u(s))ds.

This implies that y is also a solution and y0 = uT (φ) =
Pφ = φ. Then, the uniqueness implies that (u(t +
T ))y(t) = u(t), so that u(φ) is a periodic solutions.

5. Existence of Periodic Solutions for Fuzzy
Differential Equations III

In this section we study the existence of fuzzy strong
solutions and periodic solutions for the following fuzzy dif-
ferential equation with forcing term with memory.
(5.1)

u′(t) = M(t)u(t)
+f(t, u(t),

∫ t

0
g(t, s, u(s))ds), t ∈ I = [0, T ],

u(0) = u0,

where T > 0, u0 ∈ E1, and M : I → E1, f :
I × E1 × E1 → E1, g : I × I × E1 → E1 .

Assume that the following hypotheses :

(H3) The function f : I × E1 × E1 → E1 satisfies a
global Lipschitz condition

dH([f(s, x1(s), y1(s))]α, [f(s, x2(s), y2(s))]α)
≤ k2(dH([x1(s)]α, [x2(s)]α)

+dH([y1(s)]α, [y2(s)]α)),

for all xi(·), yi(·) ∈ E1, (i = 1, 2) and a finite positive
constant k2 > 0.

(H4) The function g : I × I × E1 → E1 satisfies a
global Lipschitz condition

dH

([ ∫ t

0

g(t, s, x(s))ds
]α

,
[ ∫ t

0

g(t, s, y(s))ds
]α)

≤ k3

∫ t

0

dH([x(s)]α, [y(s)]α)ds,

for all x(·), y(·) ∈ E1, and a finite positive constant k3 >
0.

Definition 5.1. [3] The fuzzy process u : I → E1

is a fuzzy solution of equation (5.1) if and only if, for
i, j = l, r,

(u′αl )(t) = min{Mα
i (t)uα

j (t)

+fα
l (t, uα

j (t),
∫ t

0

gα
l (t, s, uα

j (s))ds)},

(u′αr )(t) = max{Mα
i (t)uα

j (t)

+fα
r (t, uα

j (t),
∫ t

0

gα
r (t, s, uα

j (s))ds)},

(uα
l )(0) = uα

0l, (u
α
r )(0) = uα

0r.

Theorem 5.2. Let T > 0, and hypotheses (H3)-(H5) hold.
Then, for every u0 ∈ E1, problem (5.1) has a unique fuzzy
strong solution u ∈ C1(I, E1).

Proof. Assume that the value u0 and M(t), f(t) are posi-
tive fuzzy numbers. From the definition of fuzzy solution,

(u′αl )(t) = Mα
l (t)uα

l (t)

+fα
l

(
t, uα

l (t),
∫ t

0

gα
l (t, s, uα

l (s))ds
)
,

(u′αr )(t) = Mα
r (t)uα

r (t)

+fα
r

(
t, uα

r (t),
∫ t

0

gα
r (t, s, uα

r (s))ds
)

and

(uα
l )(t) = uα

0le
∫ t
0 Mα

l (s)ds +
∫ t

0

e
∫ t

s
Mα

l (τ)dτ

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, σ, uα

l (σ))dσ
)
ds,

(uα
r )(t) = uα

0re
∫ t
0 Mα

r (s)ds +
∫ t

0

e
∫ t

s
Mα

r (τ)dτ

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, σ, uα

r (σ))dσ
)
ds.
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The equation (5.1) is related to the following fuzzy integral
equations;

(5.2)
u(t) =u0S(t) +

∫ t

0

S(t− s)

× f
(
s, u(s),

∫ s

0

g(s, τ, u(τ))dτ
)
ds

For each ζ(t) ∈ C1(I, E1), t ∈ I define

(Ψζ)(t) = S(t)u0 +
∫ t

0

S(t− s)

×f
(
s, ζ(s),

∫ s

0

g(s, τ, ζ(τ))dτ
)
ds.

Thus, (Ψζ)(t) : I → C1(I, E1) is continuous, and Ψ :
C1(I, E1) → C1(I, E1). It is obvious that fixed point of
Ψ is solution for the problem (5.1) [3].

Then, to be show u(t) is fuzzy strong solution, we show
u(t) is Hukuhara differentiable. Let’s t ∈ I, h > 0, for ev-
ery α ∈ [0, 1],

[u(t + h)−H u(t)]α

h

=
1
h

[
uα

0lS
α
l (t + h) +

∫ t+h

0

Sα
l (t + h− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds

−uα
0lS

α
l (t)−

∫ t

0

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

uα
0rS

α
r (t + h) +

∫ t+h

0

Sα
r (t + h− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

−uα
0rS

α
r (t)−

∫ t

0

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]

=
1
h

[
uα

0lS
α
l (t)(Sα

l (h)− 1)

+Sα
l (h)

∫ t+h

t

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds

+(Sα
l (h)− 1)

∫ t

0

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

uα
0rS

α
r (t)(Sα

r (h)− 1)

+Sα
r (h)

∫ t+h

t

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

+(Sα
r (h)− 1)

∫ t

0

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]
=

1
h

{
[uα

0lS
α
l (t)(Sα

l (h)− 1), uα
0rS

α
r (t)(Sα

r (h)− 1)]

+
[
Sα

l (h)
∫ t+h

t

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

Sα
r (h)

∫ t+h

t

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]
+

[
(Sα

l (h)− 1)
∫ t

0

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

(Sα
r (h)− 1)

∫ t

0

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]}
The limits of these functions as h → 0+, respectively,

lim
h→0+

1
h

[uα
0lS

α
l (t)(Sα

l (h)− 1),

uα
0rS

α
r (t)(Sα

r (h)− 1)]
= [uα

0lM
α
l (t)Sα

l (t), uα
0rM

α
r (t)Sα

r (t)],

lim
h→0+

1
h

[
Sα

l (h)
∫ t+h

t

Sα
l (t− s)
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×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

Sα
r (h)

∫ t+h

t

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]
=

[
Mα

l (t)
∫ t

0

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

Mα
r (t)

∫ t

0

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]
,

lim
h→0+

1
h

[
(Sα

l (h)− 1)
∫ t

0

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

(Sα
r (h)− 1)

∫ t

0

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]
=

[
fα

l

(
t, uα

l (t),
∫ t

0

gα
l (t, s, uα

l (s))ds
)
,

fα
r

(
t, uα

r (t),
∫ t

0

gα
r (t, s, uα

r (s))ds
)]

.

Therefore

lim
h→0+

[u(t + h)−H u(t)]α

h

= [uα
0lM

α
l (t)Sα

l (t), uα
0rM

α
r (t)Sα

r (t)]

+
[
Mα

l (t)
∫ t

0

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

Mα
r (t)

∫ t

0

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]
+

[
fα

l

(
t, uα

l (t),
∫ t

0

gα
l (t, s, uα

l (s))ds
)
,

fα
r

(
t, uα

r (t),
∫ t

0

gα
r (t, s, uα

r (s))ds
)]

=
[
uα

0lM
α
l (t)Sα

l (t)

+fα
l

(
t, uα

l (t),
∫ t

0

gα
l (t, s, uα

l (s))ds
)

+Mα
l (t)

∫ t

0

Sα
l (t− s)

×fα
l

(
s, uα

l (s),
∫ s

0

gα
l (s, τ, uα

l (τ))dτ
)
ds,

uα
0rM

α
r (t)Sα

r (t)

+fα
r

(
t, uα

r (t),
∫ t

0

gα
r (t, s, uα

r (s))ds
)

+Mα
r (t)

∫ t

0

Sα
r (t− s)

×fα
r

(
s, uα

r (s),
∫ s

0

gα
r (s, τ, uα

r (τ))dτ
)
ds

]
=

[
Mα

l (t)uα
l (t)

+fα
l

(
t, uα

l (t),
∫ t

0

gα
l (t, s, uα

l (s))ds
)
,

Mα
r (t)uα

r (t)

+fα
r

(
t, uα

r (t),
∫ t

0

gα
r (t, s, uα

r (s))ds
)]

.

The same behavior can be checked for the left-sided
Hukuhara quotients. This proves that

dH

([ [u(t + h)−H u(t)]α

h

]
,[

Mα
l (t)uα

l (t)

+fα
l

(
t, uα

l (t),
∫ t

0

gα
l (t, s, uα

l (s))ds
)
,

Mα
r (t)uα

r (t)

+fα
r

(
t, uα

r (t),
∫ t

0

gα
r (t, s, uα

r (s))ds
)])

→ 0,

as h → 0+, uniformly in α, so that

d∞

(u(t + h)−H u(t)
h

, u′(t)
)
→ 0,

where, for t ∈ I, u′(t) given levelwise by

[u′(t)]α

=
[
Mα

l (t)uα
l (t) + fα

l

(
t, uα

l (t),
∫ t

0

gα
l (t, s, uα

l (s))ds
)
,

Mα
r (t)uα

r (t) + fα
r

(
t, uα

r (t),
∫ t

0

gα
r (t, s, uα

r (s))ds
)]

is a fuzzy number. Thus u(t) is fuzzy strong solution of
equation (5.1).

Now we study the periodic solutions for the fuzzy dif-
ferential equation (5.1). For this purpose, assume that the
following conditions hold.

(H5) For a constant T > 0, t ∈ I = [0, T ], x, y ∈ E1,
f(t + T, x, y) = f(t, x, y), g(t + t, s + T, x) = g(t, s, x),
Pu0 = u(T ).
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Then by (3.4)-(3.5) and (H5), the following to obtain

y(t) = u(t + T )

= S(t + T )u0 +
∫ t+T

0

S(t + T − s)

× f
(
s, u(s),

∫ s

0

g(s, τ, u(τ))dτ
)
ds

= S(t)S(T )u0 +
∫ T

0

S(t)S(T − s)

× f
(
s, u(s),

∫ s

0

g(s, τ, u(τ))dτ
)
ds

+
∫ t+T

T

S(t + T − s)

× f
(
s, u(s),

∫ s

0

g(s, τ, u(τ))dτ
)
ds

= S(t)
[
S(T )u0 +

∫ T

0

S(T − s)

× f
(
s, u(s),

∫ s

0

g(s, τ, u(τ))dτ
)
ds

]
+

∫ t

0

S(t + T − s− T )

× f
(
s + T, u(s + T ),∫ s+T

0

g(s + T, τ, u(τ))dτ
)
ds

= S(t)u(T ) +
∫ t

0

S(t− s)

× f
(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ
)
ds

= S(t)u0 +
∫ t

0

S(t− s)

× f
(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ
)
ds.

This implies that y is also a solution and y0 = uT (φ) =
Pφ = φ. Then, the uniqueness implies that (u(t +
T ))y(t) = u(t), so that u(φ) is a periodic solutions.
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