References
- Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999 ; 4 : D662– 70. https://doi.org/10.2741/Poole
- Aigner T and Dudhia J. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis : a hypothesis. Ann Rheum Dis. 1997 ; 56 : 287–91. https://doi.org/10.1136/ard.56.5.287
- Dinarello CA and Moldawer LL. Proinflammatory and Anti inflammatory Cytokines in Rheumatoid Arthritis. Thousand Oaks, CA : A Primer for Clinicians Amgen Inc 1999.
- Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest. 1997 ; 100 : 93–106. https://doi.org/10.1172/JCI119526
- Westling J, Fosang AJ, Last K, Thompson VP, Tomkinson KN, Hebert T et al. ADAMTS4 cleaves at the aggrecanase site(Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J Biol Chem. 2002 ; 277 : 16059-66. https://doi.org/10.1074/jbc.M108607200
-
Pujol JP. TGF-
$\beta$ and osteoarthritis : In vivo veritas? Osteoarthritis and cartilage. 1997 ; 7 : 439-40. -
Wrana JL, Attisano L, Wieser R, Ventura F and
$Massagu\acute{e}$ J. Mechanism of activation of the TGF-$\beta$ receptor. Nature. 1994 ; 370 : 341. https://doi.org/10.1038/370341a0 - Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T and Ishii S. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem. 1999 ; 274 : 8949-57. https://doi.org/10.1074/jbc.274.13.8949
- Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, Gotoh Y, Matsumoto K and Nishida E. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c- Jun N-terminal kinase. J Biol Chem. 1997 ; 272 : 8141-4.
- Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, and Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGFbeta signal transduction. Science 1995 ; 270 : 2008-11. https://doi.org/10.1126/science.270.5244.2008
- Chang L and Karin M. Mammalian MAP kinase signalling cascades. Nature 2001 ; 410 : 37-40. https://doi.org/10.1038/35065000
- Robinson MJ, Cobb MH. Mitogenactivated protein kinase pathways. Curr Opin Cel Biol. 1997 ; 9 : 180-6. https://doi.org/10.1016/S0955-0674(97)80061-0
-
Chowdhury TT, Salter DM, Bader DL, Lee DA. Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influe- nces the response of chondrocytes cultured in agarose constructs to IL-1
${\beta}eta$ and dynamic compression. Inflamm Res. 2008 ; 57 : 306-13. https://doi.org/10.1007/s00011-007-7126-y - Dang NH, Zhang X, Zheng M, Son KH, Chang HW, Kim HP et al. Inhibitory constituents against cyclooxygenases from Aralia cordata Thunb. Arch Pharm Res. 2005 ; 28 : 28-33. https://doi.org/10.1007/BF02975131
- Baek YH, Huh JE, Lee JD, Choi DY, Park DS. Effect of Aralia cordata extracts on cartilage protection and apoptosis inhibition. Bioll Pharm Bull. 2006 ; 29 : 1423-30. https://doi.org/10.1248/bpb.29.1423
- Park DS, Huh JE, Baek YH. Therapeutic effect of Aralia cordata extracts on cartilage protection in collagenase-induced inflammatory arthritis rabbit model. J Ethnopharmacol. 2009 ; 125 : 207-17. https://doi.org/10.1016/j.jep.2009.07.010
-
Ahmed S, Wang N, Lalonde M, Goldberg VM, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate(EGCG) differentially inhibits interleukin-1
$\beta$ -induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther. 2004 ; 308 : 767-73. - Rasheed Z, Anbazhagan AN, Akhtar N, Ramamurthy S, Voss FR, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase- 13 in human chondrocytes. Arthritis Res Ther. 2009 ; 11 : R71. https://doi.org/10.1186/ar2700
- Westling J, Fosang AJ, Last K, Thompson VP, Tomkinson KN, Hebert T et al. ADAMTS4 cleaves at the aggrecanase site(Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J Biol Chem. 2002 ; 277 : 16059-66. https://doi.org/10.1074/jbc.M108607200
- Tortorella MD, Malfait AM, Deccico C, Arner E. The role of ADAM-TS4(aggrecanase-1) and ADAM-TS5(aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage. 2001 ; 9 : 539-52. https://doi.org/10.1053/joca.2001.0427
- Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL et al. Characterization of and osteoarthritis susceptibility in ADAMTS- 4-knockout mice. Arthritis Rheum. 2004 ; 50 : 2547-58. https://doi.org/10.1002/art.20558
- Powell AJ, Little CB, Hughes CE. Low molecular weight isoforms of the aggrecanases are responsible for the cytokine-induced proteolysis of aggrecan in a porcine chondrocyte culture system. Arthritis Rheum. 2007 ; 56 : 3010-19. https://doi.org/10.1002/art.22818
- Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J ClinI nvest. 1989 ; 84 : 678-85. https://doi.org/10.1172/JCI114215
- Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases : role in arthritis. Front Biosci. 2006 ; 11 : 529-43. https://doi.org/10.2741/1817
- Lin PM, Christoper Chen CT, Torzilli PA. Increased stromyelin-1(MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen demage in cyclically load injuried articular cartilage. Osteoarthritis and Cartilage. 2004 ; 12 : 485-96 https://doi.org/10.1016/j.joca.2004.02.012
- Dumond H, Presle N, Pottie P, Pacquelet S, Terlain B, Netter P et al. Site specific change in gene expression and cartilage metabolism during early experimental osteoarthritis. Osteoarthritis Cartilage. 2004 ; 12 : 284-95. https://doi.org/10.1016/j.joca.2003.11.008
- Kim JH, Ryu KH, Jung KW, Han CK, Kwak WJ, Cho YB. SKI306X suppresses cartilage destruction and inhibits the production of matrix metalloproteinase in rabbit joint cartilage explants culture. J Pharmacol Sci. 2005 ; 98 : 298- 306. https://doi.org/10.1254/jphs.FPJ04058X
- Dahlberg L, Billinghurst RC, Manner P, Nelson F, Webb G, Ionescu M et al. Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1(matrix metalloproteinase 1). Arthritis Rheum. 2000 ; 43 : 673-82. https://doi.org/10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO;2-8
- Fosang AJ, Last K, Maciewicz RA. Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest. 1996 ; 98 : 2292-9. https://doi.org/10.1172/JCI119040
- Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther. 2003 ; 5 : 94-103.
- Dodge GR, Jimenez SA. Glucosamin sulfate modulates the levels of aggrecan and matrix metalloproteinase- 3 synthesized by cultured human osteoarthritis articular chondrocytes. Osteoarthritis and Cartilage. 2003 ; 11 : 424-32. https://doi.org/10.1016/S1063-4584(03)00052-9
- Shingleton WD, Ellis AJ, Rowan AD, Cawston TE. Retinoic acid combines with interleukin-1 to promote the degradation of collagen from bovine nasal cartilage: Matrix Metalloproteinase-1 and –13 are involved in cartilage breakdown. J Cellular Biochem. 2000 ; 79 : 519-31. https://doi.org/10.1002/1097-4644(20001215)79:4<519::AID-JCB10>3.0.CO;2-U
-
Redini F, Mauviel A, Pronost S, Loyau G, Pujol JP. Transforming growth factor
$\beta$ exerts opposite effects from interleukin-1$\beta$ on cultured rabbit articular chondrocytes through reduction of interleukin-1 receptor expression. Arthritis Rheum. 1993 ; 36 : 44-50 https://doi.org/10.1002/art.1780360108 - Boumediene K, Conrozier T, Mathieu P, Richard M, Marcelli C, Vignon E, Pujol JP. Decrease of cartilage transforming growth factorbeta receptor II expression in the rabbit experimental osteoarthritis potential role in cartilage breakdown. Osteoarthritis Cartilage. 1998 ; 6 : 146-9. https://doi.org/10.1053/joca.1997.0104
- van Beuningen HM, van der Kraan PM, Arntz OJ and van den Berg WB. Transforming growth factor-b stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest. 1994 ; 71 : 279.
-
Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, and van den Berg WB. Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-
$\beta$ into murine knee joints. Lab Invest. 1998 ; 78 : 133. -
van Beuningen HM, van der Kraan PM, Arntz OJ and van den Berg WB. In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-
$\beta$ 1 : agerelated differences. Ann Rheum Dis. 1994 ; 53 :593. https://doi.org/10.1136/ard.53.9.593 - van Beuningen HM, van der Kraan PM, Arntz OJ and van den Berg WB. Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor : studies in anatomically intact cartilage in vitro and in vivo. Ann Rheum Dis. 1993 ; 52 : 185. https://doi.org/10.1136/ard.52.3.185
- Seger R and Krebs EG. The MAPK signaling cascade. FASEBJ. 1995 ; 9 : 726-35.
- Waskiewicz AJ and Cooper JA. Evolutionary conservation of Xenopus laevis mitogenactivated protein kinase activation and function. Curr Opin Cell Biol. 1995 ; 7 : 798-805. https://doi.org/10.1016/0955-0674(95)80063-8
- Tibbles LA and Woodgett JR. The stressactivated protein kinase pathways. Cell Mol Life Sci. 1999 ; 55 : 1230-54. https://doi.org/10.1007/s000180050369
- Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000 ; 103 : 239-52. https://doi.org/10.1016/S0092-8674(00)00116-1
- Johnson GL and Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002 ; 298 : 1911-2. https://doi.org/10.1126/science.1072682
- Werlen G, Hausmann B, Naeher D and Palmer E. Signaling life and death in the thymus : timing is everything. Science. 2003 ; 299 : 1859-63. https://doi.org/10.1126/science.1067833
- Fernandes JC, Martel-Pelletier J and Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002 ; 39 : 237-46.
- Liacini A, Sylvester J, Li WQ, Zafarullah M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1(AP-1) and nuclear factor kappa B(NF-kappa B) transcription factors downregulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol. 2002 ; 21 : 251-62 https://doi.org/10.1016/S0945-053X(02)00007-0
- Jakob M, Demarteau O, Schafer D, Hintermann B, Dick W, Heberer M and Martin I. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem. 2001 ; 81 : 368-77. https://doi.org/10.1002/1097-4644(20010501)81:2<368::AID-JCB1051>3.0.CO;2-J
- Mandl EW, Jahr H, Koevoet JL, van Leeuwen JP, Weinans H, Verhaar JA and van Osch GJ. Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in monolayer culture. Matrix Biol. 2004 ; 23 : 231-41. https://doi.org/10.1016/j.matbio.2004.06.004
- Darling EM and Athanasiou KA. Growth factor impact on articular cartilage subpopulations. Cell Tissue Res. 2005 ; 322 : 463-73. https://doi.org/10.1007/s00441-005-0020-4