DOI QR코드

DOI QR Code

Characteristics of Particulate Atmospheric Polycyclic Aromatic Hydrocarbons Pollution in Residential/Roadside Areas of Metropolitan Cities and a Background Area

대도시의 주거/도로변 지역 및 배경 지역의 대기 중 입자상 다환 방향족 탄화수소의 특성

  • Jang, Jong-Dae (Department of Environmental Engineering, Kyungpook National University) ;
  • Shin, Seung-Ho (Department of Environmental Engineering, Kyungpook National University) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • Received : 2010.03.16
  • Accepted : 2010.05.20
  • Published : 2010.07.31

Abstract

The present study aims to evaluate the characteristics of atmospheric polycyclic aromatic hydrocarbons (PAHs) pollution in roadside and residential areas of two Korean metropolitan cities (Seoul and Incheon) and a background area (Seokmolee). This purpose was established by analyzing temporal and spacial concentration distribution of total and 7 individual PAHs, which were extracted from ambient particulate matters, and by utilizing a multivariate statistical method (principal component analysis, PCA) for the qualitative determination of potential PAH sources. Target PAHs included benzo(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), chrysene (Chr), dibenzo(a,h)anthracene (DahA), and indeno(1,2,3-cd)pyrene (IcdP). For all surveyed sites, the concentrations of total PAHs were higher in winter season than in other seasons. However, the concentrations of individual PAHs varied with surveyed sites. In both residential and roadside sites of Seoul and Incheon, BbF revealed the highest atmospheric levels. For all 7 target PAHs, the ambient concentrations were higher in Seoul and Incheon than in a background area (Seokmolee). In both residential and roadside areas, the concentrations of 4 target PAHs (BaA, BbF, BkF, DahA) were higher in Incheon than in Seoul. However, both the residential and roadside Chr concentrations were comparable in Seoul and Incheon. In addition, the residential IcdP concentrations were higher in Incheon than in Seoul, whereas the roadside concentrations were higher in Seoul. The roadside and residential BaP concentrations exhibited the reverse result to the IcdP concentrations. An PCA analysis suggested that atmospheric PAHs in both residential and roadside areas would be due to combined effects of several potential sources such as gasoline- and diesel-fueled vehicles, coal/oil combustion, and waste incineration.

Keywords

References

  1. 김형섭, 김영성, 김종국, 2006, 2002년 6월부터 11월까지 전주지역 대기 중 다환 방향족 탄화수소의 특성, 한국대기환경학회지, 22, 499-508.
  2. 박찬구, 윤중섭, 어수미, 신정식, 김민영, 손종열, 모세영, 2006, 서울지역 대기 중 다환방향족탄화수소의 발생원별 기여도 평가, 한국대기환경학회지, 22, 287-295.
  3. 이지이, 김용표, 배귀남, 박수미, 진현철, 2008, 서울시 도로변에서 입자상 다환방향족탄화수소의 농도 특성, 한국대기환경학회지, 24, 133-142. https://doi.org/10.5572/KOSAE.2008.24.2.133
  4. 한진석, 이민도, 임용재, 이상욱, 김영미, 공부주, 안준영, 홍유덕, 2006, 수도권지역에서 환경대기 중 유해대기오염물질(VOCs, aldehydes, PAHs) 농도분포 특성 연구, 한국대기환경학회지, 22, 574-589.
  5. Andreou, G., Rapsomanikis, G., 2009, Polycyclic aromatic hydrocarbons and their oxygenated derivatives in the urban atmospheric of Athens, J. Hazard. Mater., 172, 363-373. https://doi.org/10.1016/j.jhazmat.2009.07.023
  6. Amodio, M., Bruno, P., Caselli, M., de Gennaro, G., Dambruoso, P. R., Daresta, B. E., Ielpo, P., Gungol, F., Placentino, C. M., Paolillo, V., Tutino, M., 2008, Chemical characterization of fine particulate matter during peak PM10 episodes in Apulia (South Italy), Atmos. Res., 90, 313-325. https://doi.org/10.1016/j.atmosres.2008.07.003
  7. Bi, X., Simoneit, B. R. T., Sheng, G., Fu, J., 2008, Characterization of molecular markers in smoke from residential coal combustion in China, Fuel, 87, 112-119. https://doi.org/10.1016/j.fuel.2007.03.047
  8. Bruno, P., Caselli, M., de Gennaro, G., de Rienzo, M., Ielpo, P., Manigrassi, D., 2002, Collection and analytical characterization of atmospheric particulate in the city of Bari, Annali di Chimica., 92, 815-824.
  9. Chang, K. F., Fang, G. C., Chen, J. C., Wu, Y. S., 2006, Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004, Environ. Poll., 142, 388-396. https://doi.org/10.1016/j.envpol.2005.09.025
  10. Dong, T. T., Lee, B. K., 2009, Characteristics, toxicity, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea, Chemosphere, 74, 1245-1253. https://doi.org/10.1016/j.chemosphere.2008.11.035
  11. Esen, F., Tasdemir, Y., Vardar, N., 2008, Atmospheric concentrations of PAHs, their possible sources and gas-to-particle portioning at a residential site of Bursa, Turkey, Atmos. Res., 88, 243-255. https://doi.org/10.1016/j.atmosres.2007.11.022
  12. Garban, B., Blanchoud, H., Motelay-Massei, A., Chevreuil, M., Ollivon, D., 2002, Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites, Atmos. Environ. 36, 5395-5403. https://doi.org/10.1016/S1352-2310(02)00414-4
  13. Guo, H., Wang, T., Louie, P. K. K., 2004, Source apportionment of ambient non methane hydrocarbons in Hong Kong: application of principal component analysis/absolute principal component scores (PCA/APCS) receptor model, Environ. Poll., 129, 489-498. https://doi.org/10.1016/j.envpol.2003.11.006
  14. Guo, H., So, K. L., Simpson, I. J., Barletta, B., Meinardi, S., Blake, D. R., 2007, $C_1–C_8volatile$ organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment, Atmos. Environ., 41, 1456-1472. https://doi.org/10.1016/j.atmosenv.2006.10.011
  15. Halsall, C. J., Sweetman, A. J., Barrie, L. A., Jones, K. C., 2001, Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic, Atmos. Environ., 35, 255-267. https://doi.org/10.1016/S1352-2310(00)00195-3
  16. Ho, K. F., Lee, S. C., Chiu, G. M. Y., 2002, Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station, Atmos. Environ., 36, 57-65. https://doi.org/10.1016/S1352-2310(01)00475-7
  17. Hu, Y., Bai, Z., Zhang, L., Wang, X., Zhang, L., Yu, Q., Zhu, T., 2007, Health risk assessment for traffic policemen exposed to polycyclic aromatic hydrocarbons (PAHs) in Tianjin, China, Sci. Total Environ., 382, 240-250. https://doi.org/10.1016/j.scitotenv.2007.04.038
  18. Jolliffe, I. T., 2002, Principal Component Analysis, 2nd Ed., Springer, New York.
  19. Kameda, Y., Shirai, J., Komai, T., Nakanishi, J., Masunaga, S., 2005, Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to human respiratory tract, Sci. Total Environ., 340, 71-80. https://doi.org/10.1016/j.scitotenv.2004.08.009
  20. Kulkarni, P., Venkataraman, C., 2000, Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India, Atmos. Environ., 34, 2785-2790. https://doi.org/10.1016/S1352-2310(99)00312-X
  21. Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., Peng, X. Z., 2006, Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China, Sci. Total Environ., 355, 145-155. https://doi.org/10.1016/j.scitotenv.2005.02.042
  22. Liu, M., Cheng, S. B., Ou, D. N., Hou, L. J., Gao, L., Wang, L. L., Xie, Y. S., Yang, Y., Xu, S. Y., 2007, Characterization, identification of road dust PAHs in central Shanghai areas, China, Atmos. Environ., 41, 8785-8795. https://doi.org/10.1016/j.atmosenv.2007.07.059
  23. Lucarelli, F., Mando, A., Nava, S., Prati, P., Zucchiatti, A., 2004, One-year study of the elemental composition and source apportionment of $PM_{10}$ aerosols in Florence, Italy, J. Air Waste Manage. Assoc., 54, 1372-1382. https://doi.org/10.1080/10473289.2004.10471000
  24. Mastral, A. M., Lopez, J. M., Callen, M. S., García, T., Murillo, R., Navarro, M. V., 2003, Spatial and temporal PAH concentrations in Zaragoza, Spain, Sci. Total Environ., 307, 111-124. https://doi.org/10.1016/S0048-9697(02)00460-6
  25. Ravindra, K., Sokhi, R., Grieken, R. V., 2008, Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation, Atmos. Environ., 42, 2895-2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
  26. Simoneit, B. R. T., Medeiros, P. M., 2005, Combustion products of plastics as indicators for refuse burning in the atmosphere, Environ. Sci. Technol., 39, 6961-6970. https://doi.org/10.1021/es050767x
  27. Song, Y., Dai, W., Shao, M., Liu, Y., Lu, S., Kuster, W., Goldan, P., 2008, Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China, Environ. Poll., 156, 174-183. https://doi.org/10.1016/j.envpol.2007.12.014
  28. USEPA(United States of Environmental protection Agency), 2003, Appendix A to 40 CFR. Part 423-126 Priority Pollutants. 2003. Available from: http://www.epa.gov/region01/npdes/permits/generic/prioritypollutants.pdf.
  29. Vione, D., Barra, S., de Gennaro, G., de Rienzo, M., Pozzoli, L., Gilardoni, S., Perrone, M. G., 2004, Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate II: sinks and fate, Annali di chimica., 94, 257-268. https://doi.org/10.1002/adic.200490031
  30. Yang, H. H., Lee, W. J., Chen, S. J., Lai, S. O., 1998, PAH emission from various industrial stacks, J. Hazard. Mater., 60, 159-174. https://doi.org/10.1016/S0304-3894(98)00089-2
  31. Zielinska, B., Sagebiel, J., McDonald, J. D., Whitney, K., Lawson, D. R., 2004, Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles, Air Waste Manag. Assoc., 54, 1138-1150. https://doi.org/10.1080/10473289.2004.10470973