DOI QR코드

DOI QR Code

Toxic Effects of Fungicide Tebuconazole on the Early Development of African Clawed Frog, Xenopus laevis

진균제 농약 tebuconazole이 Xenopus laevis의 초기 배 발생에 미치는 독성 영향

  • Hwang, Yong-Gi (Department of Biology, Changwon National University) ;
  • Lee, Mi-Ju (Department of Biology, Changwon National University) ;
  • Lee, You-Hwa (Department of Biology, Changwon National University) ;
  • Cheong, Seon-Woo (Department of Biology, Changwon National University) ;
  • Yoon, Chun-Sik (Department of Biology, Changwon National University)
  • Received : 2010.04.30
  • Accepted : 2010.07.14
  • Published : 2010.08.31

Abstract

We investigated the toxic effects of tebuconazole on development in the African clawed frog, Xenopus laevis. To test the toxic effects, frog embryo teratogenesis assays using Xenopus were performed. Embryos were exposed to various concentrations of tebuconazole($0-100\;{\mu}M$). $LC_{100}$ for tebuconazole was $100\;{\mu}M$, and the $LC_{50}$ determined by probit analysis was $82.35\;{\mu}M$. The exposure to tebuconazole concentrations ${\geq}40\;{\mu}M$ resulted in 11 different types of severe external malformations including gut dysplasia. Histological examinations revealed various dysplasia in the eye, heart, liver, intestine, somatic muscle, and in the pronephric ducts. The tissue-specific toxic effects were investigated with an animal cap assay. Blood cells are generally induced at a high frequency by the combination of mSCF and activin A, however, the induction of blood cells was strongly inhibited by the addition of tebuconazole. Electron micrographs of tested embryos showed many of multivesicular bodies and dysplasia of photo-receptive cell, however, the somatic muscle degeneration was not severe. The gene expression of cultivated animal cap explants was investigated by reverse transcriptase-polymerase chain reaction and revealed that expression of the blood-specific marker, $\beta$ globin II and muscle-specific marker, muscle actin were more strongly inhibited than the neural-specific marker, XEn2.

Keywords

References

  1. Ariizumi, T., Asashima, M., 1994, In vitro control of the embryonic form of Xenopus laevis by activin A: Time and dose-dependent inducing properties of activin-treated ectoderm, Dev. Growth Differ. 36, 499-507. https://doi.org/10.1111/j.1440-169X.1994.00499.x
  2. Ariizumi, T., Sawamura, K., Uchiyama, H., Asashima, M., 1991, Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis, Int. J. Dev. Biol., 35(4), 407-414.
  3. ASTM(American Society for Testing and Materials), 1998, Standard guide for conducting the Frog Embryo Teratopenesis Assay-Xenopus (FETAX), Philadelphia, ASTM, E1439-1498.
  4. Bridges, C. M., 2000, Long-term effects of pesticide exposure at various life stages of the southern leopard Frog(Rana sphenocephala), Arch. Environ. contam. Toxicol., 39(1), 90-96
  5. Burkhart, J. G., Helgen, J. C., Fort. D. J., Gallagher, K., Bowers, D., Propst, T. L., Gernes, M., Magner, J., Shelby, M. D., Lucier, G., 1998, Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities, Environ. Health. Perspect., 106(12), 841-848. https://doi.org/10.1289/ehp.98106841
  6. Colombo, A., Orsi, F., Bonfanti, P., 2005, Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholin- esterase activity and affects muscular integrity in Xenopus laevis larvae, Chemosphere, 61(11), 1665-1671. https://doi.org/10.1016/j.chemosphere.2005.04.005
  7. Cooke, J., Smith, J. C., Smith, E. J., Yaqoob, M., 1987, The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderminducing factor, Development, 101, 893-908.
  8. Elliott-Feeley, E., Armstrong, J. B., 1981-1982, Effects of fenitrothion and carbaryl on Xenopus laevis development, Toxicology, 22(4), 319-335.
  9. FAO, 1994, Pesticide residues in food 1994- Evaluations, 1055-1096.
  10. Hayes, T. B., Case, P., Chui, S., Chung, D., Haeffele, C., Haston, K., Lee, M., Mai, V. P., Marjuoa, Y., Parker, J., Tsui, M., 2006, Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact?, Environ. Health. Perspect, 114, 40-50.
  11. Hemmati-Brivanlou, A., Melton, D. A., 1994, Inhibition of activin receptor signaling promoted neurulization in Xenopus, Cell, 77(2), 273-281. https://doi.org/10.1016/0092-8674(94)90319-0
  12. Moser, V. C., Barone, S. Jr., Smialowicz, R. J., Harris, M. W., Davis, B. J., Overstreet, D., Mauney, M., Chapin, R. E., 2001, The effects of perinatal tebuconazole exposure on adult neurological, immunological, and reproductive function in rats, Toxicol. Sci., 62(2), 339-352. https://doi.org/10.1093/toxsci/62.2.339
  13. Miyanaga, Y., Shiurba, R., Asashima, M., 1999, Blood cell induction in Xenopus animal cap explants: effects of fibroblast growth factor, bone morphogenetic proteins, and activin, Dev. Genes Evol., 209(2), 69-76. https://doi.org/10.1007/s004270050229
  14. Nieuwkoop, P. D., Faber, J., 1956, Normal table of Xenopus laevis (Daudin), Amsterdam, North-Holland Publishing, p. 243.
  15. Orkin, S. H., Harosi, F. L., Leder, P., 1975, Differentiation of erythroleukemic cells and their somatic hybrids, Proc. Nati. Acad. Sci. USA, 72(1), 98-102. https://doi.org/10.1073/pnas.72.1.98
  16. Panzenbock, B., Bartunek, P., Mapara, M. Y., Zenke, M., 1998, Growth and differentiation of human stem cell factor/erythropoietin- dependent erythroid progenitor cells in vitro, Bolld., 92(10), 3658-3668.
  17. Peng, H. B., editors. Xenopus laevis practical uses in cell and molecular biology, New York, Academic Press, 62-109.
  18. Pilar, H. M., Paz, H. M., Alvarez, R., 1993, The carbamate insecticide ZZ-Aphox induced structural changes of gills. live, gall-bladder, heart, and notochord of Rana perezi tadpoles, Arch. Environ. Contam. Toxicol., 25(2), 184-191.
  19. Reynold, E. S., 1963, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 17, 208-212. https://doi.org/10.1083/jcb.17.1.208
  20. Shin, S. H., Lee, M. J., Lee, Y. H., Cheong, S. W., Yoon, C. S., 2009, The toxic effects of a pesticide carbaryl on the development of african clawed frog, Xenopus laevis, J. Environ. Sci., 18(11), 1247-1259. https://doi.org/10.5322/JES.2009.18.11.1247
  21. Tardin, D., 1972, Ultrastructural features of neural induction in Xenopus laevis, J. Anat., 111(1), 1-28.
  22. Taxvig, C., Vinggaard, A. M., Hass, U., Axelstad, M., Metzdorff, S., Nellemann, C., 2008, Endocrinedisrupting properties in vivo of widely used azole fungicides, Int. J. Androl. 31(2), 170-177. https://doi.org/10.1111/j.1365-2605.2007.00838.x
  23. Tomlin, C. D. S., 2000, The pesticide manual, 12th ed., British Crop Protection Council, UK.
  24. Vismara, C., Bacchetta, R., Cacciatorem B., Vailatim G., Fascio, U., 2001, Paraquat embryotoxicity in the Xenopus laevis cleavage phase, Aquat. Toxicol., 55(1-2), 85-93. https://doi.org/10.1016/S0166-445X(01)00153-9
  25. Yoon, C. S., Jin, J. H., Park, J. H., Yeo, C. Y., Kim, S. J., Hwang, Y. G., Hong, S. J., Cheong, S. W., 2008, Toxic effects of carbendazim and n-butyl isocyanate, metabolites of the fungicide benomyl, on early development in the African clawed frog, Xenopus laevis, Environ. Toxicol., 23(1), 131-144. https://doi.org/10.1002/tox.20338