DOI QR코드

DOI QR Code

Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation

  • Yoon, Mi-Young (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Eun-Yi (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Young-Hee (Eco-Materials Lab., Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Whang, Chin-Myung (Department of Materials Science and Engineering, Inha University)
  • Received : 2010.08.05
  • Accepted : 2010.08.17
  • Published : 2010.09.27

Abstract

A promising candidate material for a $H_2$ permeable membrane is SiC due to its many unique properties. A hydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer $\gamma-Al_2O_3$ with a graded structure. The $\gamma-Al_2O_3$ multilayer was formed on top of a macroporous $\alpha-Al_2O_3$ support by consecutively dipping into a set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols were prepared from an aluminum isopropoxide precursor and heated to $80^{\circ}C$ with high speed stirring for 24 hrs to hydrolyze the precursor. Then the solutions were refluxed at $92^{\circ}C$ for 20 hrs to form a boehmite precipitate. The particle size of the boehmite sols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiC layer was formed on top of the intermediate $\gamma-Al_2O_3$ by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. The resulting amorphous SiC-on-$Al_2O_3$ composite membrane pyrolyzed at $900^{\circ}C$ possessed a high $H_2$ permeability of $3.61\times10^{-7}$ $mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and the $H_2/CO_2$ selectivity was much higher than the theoretical value of 4.69 in all permeation temperature ranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism, which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.

Keywords

References

  1. T. M. Nenoff, R. J. Spontak and C. M. Aberg, MRS Bulletin, 31, 735 (2006). https://doi.org/10.1557/mrs2006.186
  2. N. W. Ockwig and T. M. Nenoff, Chem. Rev., 107, 4078 (2007). https://doi.org/10.1021/cr0501792
  3. T. S. Devarajan and P. N. Pintauro, Ind. Eng. Chem. Res., 30, 585 (1991). https://doi.org/10.1021/ie00051a022
  4. X. L. Pan, N. Stroh, H. Brunner, G. X. Xiong and S. S. Sheng, Separ. Purif. Tech., 32, 265 (2003). https://doi.org/10.1016/S1383-5866(03)00071-6
  5. K. Kusakabe, S. Yoneshige, A. Murata and S. Morooka, J. Membr. Sci., 116, 39 (1996). https://doi.org/10.1016/0376-7388(96)00010-5
  6. E. E. McLeary, J. C. Jansen and F. Kapteijn, Micropor. Mesopor. Mat., 90, 198 (2006). https://doi.org/10.1016/j.micromeso.2005.10.050
  7. Y. Yoshino, T. Suzuki, B. N. Nair, H. Taguchi and N. Itoh, J. Membr. Sci., 267, 8 (2005). https://doi.org/10.1016/j.memsci.2005.05.020
  8. S. Gopalakrishnan, M. Nomura, T. Sugawara and S. -I. Nakao, Desalination, 193, 230 (2006). https://doi.org/10.1016/j.desal.2005.10.021
  9. Y. Takeda, N. Shibata and Y. Kubo, J. Ceram. Soc. Jpn. Int. Ed., 109, 305 (2001). https://doi.org/10.2109/jcersj.109.1268_305
  10. X. Pagès, V. Rouessac, D. Cot, G. Nanias and J. Durand, Separ. Purif. Tech., 25, 399 (2001). https://doi.org/10.1016/S1383-5866(01)00068-5
  11. R. J. Ciora, B. Fayyaz, P. K. T. Liu, V. Suwanmethanond, R. Mallada, M. Sahimi and T. Tsotsis, Chem. Eng. Sci., 59, 4957 (2004). https://doi.org/10.1016/j.ces.2004.07.015
  12. K. Okamura, Composites, 18, 107 (1987). https://doi.org/10.1016/0010-4361(87)90489-7
  13. G. Pouskouleli, Ceram. Int., 15, 213 (1989). https://doi.org/10.1016/0272-8842(89)90041-2
  14. L. V. Interrante, C. W. Whitmarsh and W. Sherwood, Mater. Res. Soc. Symp. Proc., 365, 139 (1995).
  15. H. Suda, H. Yamauchi, Y. Uchimara, I. Fujiwara and K. Haraya, Desalination, 193, 252 (2006). https://doi.org/10.1016/j.desal.2005.04.143
  16. K. Kusakabe, Z. Y. Li, H. Maeda and S. Morooka, J. Membr. Sci., 103, 175 (1995). https://doi.org/10.1016/0376-7388(94)00322-P
  17. T. Nagano, K. Sato, T. Saitoh and Y. Iwamoto, J. Ceram. Soc. Jpn. Int. Ed., 114, 533 (2006). https://doi.org/10.2109/jcersj.114.533
  18. Y. Gu and S.T. Oyama, J. Membr. Sci., 306, 216 (2007). https://doi.org/10.1016/j.memsci.2007.08.045
  19. C. K. Lambert, and R. D. Gonzalez, Mater. Lett., 38, 145 (1999). https://doi.org/10.1016/S0167-577X(98)00149-9
  20. H. Suwardie, D. M. Kalyon and S. Kovenklioglu, J. Appl. Polymer. Sci., 42, 1087 (1991). https://doi.org/10.1002/app.1991.070420422
  21. H. Q. Ly, R. Taylor, R. J. Day and F. Heatley, J. Mater. Sci., 36, 4037 (2001). https://doi.org/10.1023/A:1017942826657
  22. G. K. Priya, P. Padmaja, K. G. K. Warrier, A. D. Damodaran and G. Aruldhas, J. Mater. Sci. Lett., 16, 1584 (1997). https://doi.org/10.1023/A:1018568418302
  23. A. J. Burggraaf and L. Cot, Fundamentals of Inorganic Membrane Science and Technology, p.150, Elsevier Science B. V., Amsterdam, Netherlands, (1996).
  24. H. Takaba, K. Mizukami, M. Kubo, A. Stirling and A. Miyamoto, J. Membr. Sci., 121, 251 (1996). https://doi.org/10.1016/S0376-7388(96)00193-7
  25. B.-K. Sea, K. Ando, K. Kusakabe and S. Morooka, J. Membr. Sci., 146, 73 (1998). https://doi.org/10.1016/S0376-7388(98)00095-7