DOI QR코드

DOI QR Code

Estimation of Household's Willingness to Pay for Ground Water Pollution Improvement

지하수오염 개선에 대한 지불의사액 추정

  • Yoo, Seung-Hoon (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Lee, Joo-Suk (Department of International Area Studies, Hoseo University)
  • 유승훈 (서울과학기술대학교 에너지환경대학원) ;
  • 이주석 (호서대학교 해외개발학과)
  • Received : 2010.06.22
  • Accepted : 2010.08.30
  • Published : 2010.09.30

Abstract

This paper attempts to examine households' willingness to pay (WTP) for ground water pollution improvement which can be used in cost-benefit analysis on the project for developing the soil pollution control technique. We applied a contingent valuation (CV) method to obtain at least a preliminary evaluation of the WTP. The CV survey was rigorously designed to comply with the guidelines for best-practiced CV studies. We surveyed a randomly selected sample of 500 households in Seoul metropolitan area and asked respondents questions in person-to-person interviews about how they would be willing to pay for the program. Respondents overall accepted the contingent market and were willing to contribute a significant amount (1,195 to 1,552 won), on average, per household per year. The aggregate value of the project for developing the soil pollution control technique amounts to approximately 20.3 billion won per year. The household values can be the benefits that ensue from the project and compared with the costs of the program to determine whether the project is economically desirable.

본 논문에서는 환경부에서 진행 중인 ‘지하수오염방지기술 개발사업’에 대한 경제성 분석의 기초자료로서 지하수오염 개선을 위한 일반가구의 지불의사액을 분석하고자 한다. 이를 위해 조건부 가치측정법(CVM)을 적용하되, CVM 연구에서 지켜야 할 다양한 지침을 엄격하게 준수하면서 가구조사를 시행하였다. 구체적으로 서울시, 인천시, 경기도 등 수도권 500 가구를 무작위로 추출하여 일대일 개별면접을 통해 '지하수오염방지기술 개발사업'에 의한 지하수오염개선을 위해 얼마나 지불할 의사가 있는지를 물었다. 응답자들은 전반적으로 조건부 시장을 잘 받아들였으며 가구당 월 평균 1,195원에서 1,552원의 지불의사액을 가지고 있는 것으로 분석되었다. 이 값을 전국으로 확장하였더니 연간 약 203.3억원에 해당 하였다. 이 값은 '지하수오염방지기술 개발사업'이 경제적으로 바람직한지 여부를 결정하기 위한 비용-편익분석에서 편익의 값으로 활용될 수 있을 것이다.

Keywords

References

  1. 한국환경기술진흥원 (2006). 토양지하수 오염확산방지를 위한 장기 종합기술개발 계획 수립. 한국환경정책평가연구원.
  2. Arrow, K., Solow, R., Portney, P.R., Leamer, E.E., Radner, R., and Schuman, H. (1993). “Report of the NOAA Panel on Contingent Valuation.” Federal Register, Vol. 58, pp. 4601-4614.
  3. Brent, R.J. (1995). Applied Cost-Benefit Analysis. Cheltenham, Edward Elgar.
  4. Cameron, T.A., and James, D. (1987). “Efficient estimation methods for closed-ended contingent valuation surveys.” Review of Economics and Statistics,Vol. 69, pp. 269-276. https://doi.org/10.2307/1927234
  5. Cooper, J., and Hanemann, W.M. (1995). Referendum Contingent Valuation: How Many Bounds Are Enough? USDA Economic Research Search Service, Food and Consumer Economics Division, Working paper.
  6. Hanemann, W.M. (1984). “Welfare evaluations in contingent valuation experiments with discrete responses.” American Journal of Agricultural Economics, Vol. 66, pp. 332-341. https://doi.org/10.2307/1240800
  7. Hanemann, W.M., and Kanninen, B.J. (1999). “The statistical analysis of discrete-response CV data,” in I.J. Bateman and K.E. Willis, ed., Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EU, and Developing Countries. Oxford, Oxford University Press.
  8. Hanemann, W.M., Loomis, J.B., and Kaninnen, B.J. (1991). “Statistical efficiency of double-bounded dichotomous choice contingent valuation.” American Journal of Agricultural Economics, Vol. 73, pp. 1255-1263. https://doi.org/10.2307/1242453
  9. Krinsky, I., and Robb, A.L. (1986). “On approximating the statistical properties of elasticities.” Review of Economics and Statistics, Vol. 68, pp. 715-719. https://doi.org/10.2307/1924536
  10. Kristrom, B. (1997). “Spike models in contingent valuation.” American Journal of Agricultural Economics, Vol. 79 pp. 1013-1023. https://doi.org/10.2307/1244440
  11. Langford, I.H., Bateman, I.J., and Langford, H.D. (1996). “A multilevel modelling approach to triple-bounded dichotomous choice contingent valuation.” Environmental and Resource Economics, Vol. 7, pp. 197-211.
  12. McConnell, K.E. (1990). “Models for referendum data: the structure of discrete choice models for contingent valuation.” Journal of Environmental Economics and Management, Vol. 18, pp. 19-34. https://doi.org/10.1016/0095-0696(90)90049-5
  13. Young, R.A. (1996). Measuring Economic Benefit for Water Investment and Policies. The World Bank.