DOI QR코드

DOI QR Code

A Web-based Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution

  • Kang, Wee-Soo (Department of Agricultural Biotechnology, Seoul National University) ;
  • Hong, Soon-Sung (Gyeonggi-do Agricultural Research and Extension Services) ;
  • Han, Yong-Kyu (Epinet Corporation, Business Incubator, Seoul National University) ;
  • Kim, Kyu-Rang (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Sung-Gi (Gyeonggi-do Agricultural Research and Extension Services) ;
  • Park, Eun-Woo (Department of Agricultural Biotechnology, Seoul National University)
  • 투고 : 2009.10.27
  • 심사 : 2009.11.18
  • 발행 : 2010.03.01

초록

This paper describes a web-based information system for plant disease forecast that was developed for crop growers in Gyeonggi-do, Korea. The system generates hourly or daily warnings at the spatial resolution of $240\;m{\times}240\;m$ based on weather data. The system consists of four components including weather data acquisition system, job process system, data storage system, and web service system. The spatial resolution of disease forecast is high enough to estimate daily or hourly infection risks of individual farms, so that farmers can use the forecast information practically in determining if and when fungicides are to be sprayed to control diseases. Currently, forecasting models for blast, sheath blight, and grain rot of rice, and scab and rust of pear are available for the system. As for the spatial interpolation of weather data, the interpolated temperature and relative humidity showed high accuracy as compared with the observed data at the same locations. However, the spatial interpolation of rainfall and leaf wetness events needs to be improved. For rice blast forecasting, 44.5% of infection warnings based on the observed weather data were correctly estimated when the disease forecast was made based on the interpolated weather data. The low accuracy in disease forecast based on the interpolated weather data was mainly due to the failure in estimating leaf wetness events.

키워드

참고문헌

  1. Anderson, M. C., Bland, W. L. and Norman, J. M. 2001. Canopy wetness and humidity prediction using satellite and synopticscale meteorological observations. Plant Dis. 85:1018-1026. https://doi.org/10.1094/PDIS.2001.85.9.1018
  2. Barry, R. G. and Chorley, R. J. 2003. Atmosphere, weather and climate. Routledge, London. 472 pp.
  3. Campbell, C. L. and Madden, L. V. 1990. Forecasting plant diseases. In: Introduction to plant disease epidemiology: John Wiley & Sons, Inc., New York, USA.
  4. Dodson, R. and Marks, D. 1997. Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim. Res. 8:1-20. https://doi.org/10.3354/cr008001
  5. Geiger, R. 1965. The climate near the ground. Harvard University Press, Cambridge, MA.
  6. Joo, H. D., Lee, M. J. and Ham, I. W. 2005. The characteristics of air temperature according to the location of automatic weather system. J. Atmosphere 15:179-186.
  7. Kaplan, M. L., Zack, J. W., Wong, V. C. and Tucillo, J. J. 1982. Initial results from a mesoscale atmospheric simulation system and comparisons with an AVE-SESAME I data set. Monthly Weather Review 110:1564-1590. https://doi.org/10.1175/1520-0493(1982)110<1564:IRFAMA>2.0.CO;2
  8. Kim, K. R. 1995. Development of a rice blast forecasting system based on near real-time microclimatic data, M. S. Thesis, Seoul National University, Suwon, Korea.
  9. Kim, K. R. 2000. Weather-driven models for rice leaf blast and their implementation to forecast disease development on the near real-time basis. PhD Thesis, Seoul National University, Suwon, Korea.
  10. Kim, K. R., Seem, R. C., Park, E. W., Zack, J. W. and Magarey, R. D. 2005. Simulation of grape downy mildew development across geographic areas based on mesoscale weather data using supercomputer. Plant Pathol. J. 21:111-118. https://doi.org/10.5423/PPJ.2005.21.2.111
  11. Kim, K. S., Gleason, M. L. and Taylor, S. E. 2006. Forecasting site-specific leaf wetness duration for input to disease-warning systems. Plant Dis. 90:650-656. https://doi.org/10.1094/PD-90-0650
  12. Magarey, P. A., Emmett, R. W., Herrmann, N. I., Wachtel, M. F. and Travis, J. W. 1997. Development of AusVit, a computerized decision support system for integrated management of diseases, pests and other production factors in Australian viticulture. Vitic. Enol. Sci. 52:175-179.
  13. Magarey, R. D., Fowler, G. A., Borchert, D. M., Sutton, T. B., Colunga-Garcia, M. and Simpson, J. A. 2007. NAPPFAST: An Internet system for the weather-based mapping of plant pathogens. Plant Dis. 91:336-345. https://doi.org/10.1094/PDIS-91-4-0336
  14. Magarey, R. D., Seem, R. C., Russo, J. M., Zack, J. W., Waight, K. T., Travis, J. W. and Oudemans, P. V. 2001. Site-specific weather information without on-site sensors. Plant Dis. 85:1216-1226. https://doi.org/10.1094/PDIS.2001.85.12.1216
  15. Magarey, R. D., Travis, J. W., Russo, J. M., Seem, R. C. and Magarey, P. A. 2002. Decision support systems: Quenching the thirst. Plant Dis. 86:4-14. https://doi.org/10.1094/PDIS.2002.86.1.4
  16. Manobianco, J., Zack, J. W. and Taylor, G. E. 1996. Workstationbased real-time mesoscale modeling designed for weather support to operations at the Kennedy Space Center and Cape Canaveral Air Station. Bull. Am. Meteor. Soc. 77:653-672. https://doi.org/10.1175/1520-0477(1996)077<0653:WBRTMM>2.0.CO;2
  17. Myers, D. E. 1994. Spatial interpolation: an overview. Geoderma 62:17-28. https://doi.org/10.1016/0016-7061(94)90025-6
  18. Rajotte, E. G., Bowser, T., Travis, J. W., Crassweller, R. M., Musser, W., Laughland, D. and Sachs, C. 1992. Implementation and adoption of an agricultural expert system: The Penn State Apple Orchard Consultant (PSAOC). Acta Hortic. 313:227-231.
  19. Russo, J. M. and Zack, J. W. 1997. Downscaling GCM output with a mesoscale model. J. Envir. Management 49:19-29. https://doi.org/10.1006/jema.1996.0113
  20. Schaefer, J. T. 1990. The critical success index as an indicator of warning skill. Weather Forecast 5:570-575. https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
  21. Seem, R. C., Magarey, R. D., Zack, J. W. and Russo, J. M. 2000. Estimating disease risk at the whole plant level with General Circulation Models. Environ. Pollut. 108:389-395. https://doi.org/10.1016/S0269-7491(99)00218-3
  22. Seem, R. C., Magnus, H. A. and Hjonnevaag. 1991. High resolution weather information for plant protection. EPPO Bull. 21:355-364. https://doi.org/10.1111/j.1365-2338.1991.tb01262.x
  23. Sokal, R. R. and Rohlf, F. J. 1973. Introduction to biostatistics. W. H. Freeman and Company, San Francisco. 368 pp.
  24. Wilks, D. S. and Shen, K. W. 1991. Threshold relative humidity duration forecasts for plant disease prediction. J. Appl. Meteorol. 30:463-470. https://doi.org/10.1175/1520-0450(1991)030<0463:TRHDFF>2.0.CO;2
  25. Workneh, F., Narasimhan, B., Srinivasan, R. and Rush, C. M. 2005. Potential of radar-estimated rainfall for plant disease risk forecast. Phytopathology 95:25-27. https://doi.org/10.1094/PHYTO-95-0025
  26. Yoshino, R. 1979. Ecological studies on penetration of rice blast fungus, Pyricularia oryzae, into leaf epidermal cells. Bull. Hokuriku Agric. Exp. Stn. 22:163-221.
  27. Yun, J. I. 2000. Estimation of climatological precipitation of North Korea by using a spatial interpolation scheme. Korean J. Agric. Forest Meteor. 2:16-23.
  28. Yun, J. I., Cho, K. S., Hwang, H., Park, E. W. and Cho, S. I. 1998. Estimating microclimatic elements of a fully developed paddy rice canopy based on standard weather data. Korean J. Meteor. 34:216-221.
  29. Yun, J. I., Yi, D. S., Choi, J. Y., Cho, S. I., Park, E. W. and Hwang, H. 1999. Elevation-corrected spatial interpolation for near-real time generation of meteorological surfaces from point observations. AgroInformatics J. 1:28-33.

피인용 문헌

  1. A Forecast Model for the First Occurrence of Phytophthora Blight on Chili Pepper after Overwintering vol.28, pp.2, 2012, https://doi.org/10.5423/PPJ.2012.28.2.172
  2. Climate Suitability forMagnaporthe oryzae TriticumPathotype in the United States vol.100, pp.10, 2016, https://doi.org/10.1094/PDIS-09-15-1006-RE
  3. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale vol.47, pp.1, 2018, https://doi.org/10.1007/s13313-017-0527-7