DOI QR코드

DOI QR Code

Production of a Phytotoxic Compound, 3-Phenylpropionic Acid by a Bacterial Endophyte, Arthrobacter humicola YC6002 Isolated from the Root of Zoysia japonica

  • Chung, Eu-Jin (Department of Research & Development, JGreen Inc.) ;
  • Park, Joo-Hwang (Division of Applied Life Science (BK 21), PMBBRC, Gyeongsang National University) ;
  • Park, Tae-Soon (Division of Applied Life Science (BK 21), PMBBRC, Gyeongsang National University) ;
  • Ahn, Jong-Woong (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Chung, Young-Ryun (Department of Research & Development, JGreen Inc.)
  • 투고 : 2010.03.02
  • 심사 : 2010.07.12
  • 발행 : 2010.09.01

초록

An endophytic bacterial strain, Arthrobacter humicola YC6002, was isolated from a surface sterilized root of Korean turf grass (Zoysia japonica) collected from Jinju, Korea. This strain showed inhibitory effect on germination and shoot growth of radish. The inhibition of germination and shoot growth of radish seeds varied depending on the age of culture and the temperature at which it was incubated. The culture filtrate of 1/10-strength Tryptic Soy Broth medium, incubated for 48 hours at $30^{\circ}C$, showed the highest inhibitory effect on radish seed germination and shoot growth (92% inhibition as compared to control). The active compound with seed germination and shoot growth inhibition was purified and identified as 3-phenylpropionic acid. The purified compound had 53% and 93% inhibitory effect on seed germination and shoot growth of radish for 500 and 1000 ppm solutions, respectively.

키워드

참고문헌

  1. Andreote, F. D., de Araujo, W. L., de Azevedo, J. L., van Elsas, J.D., da Rocha, U. N. and van Overbeek, L. S. 2009. Endophyticcolonization of potato (Solanum tuberosum L.) by anovel competent bacterial endophyte, Pseudomonas putidaP9, and its effect on associated bacterial communities. Appl.Environ. Microbiol. 75:3396-3406. https://doi.org/10.1128/AEM.00491-09
  2. Aravind, R., Kumar, A., Eapen, S. J. and Ramana, K. V. 2009.Endophytic bacterial flora in root and stem tissues of blackpepper (Piper nigrum L.) genotype: isolation, identificationand evaluation against Phytophthora capsici. Lett. Appl.Microbiol. 48:58-64. https://doi.org/10.1111/j.1472-765X.2008.02486.x
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D.,Seidman, J. G., Smith, J. A. and Struhl, K. 1995. Current protocolsin molecular biology, New York: Wiley.
  4. Azevedo, J. L., Maccheroni, J. Jr., Pereira, O. and Ara, W. L.2000. Endophytic microorganisms: a review on insect controland recent advances on tropical plants. Electr. J. Biotech. 3:40-65.
  5. Beck, H. C., Hansen, A. M. and Lauritsen, F. R. 2003. Novelpyrazine metabolites found in polymyxin biosynthesis byPaenibacillus polymyxa. FEMS Microbiol. Lett. 220:67-73. https://doi.org/10.1016/S0378-1097(03)00054-5
  6. Bender, C. L., Alarcon-Chaidez, F. and Gross, D. C. 1999.Pseudomonas syringae phytotoxins: mode of action, regulation,and biosynthesis by peptide and polyketide synthetases.Microbiol. Mol. Biol. Rev. 63:266-292.
  7. Brooks, D. S., Gonzalez, C. F., Appel, D. N. and Filer, T. H. 1994.Evaluation of endophytic bacteria as potential biological controlagents for oak wilt. Biol. Control 4:373-381. https://doi.org/10.1006/bcon.1994.1047
  8. Barrows-Broaddus, J., Dwinell, L. D. and Kerr, T. J. 1985. Evaluationof Arhtrobacter sp. for biological control of the pitchcanker fungus (Fusarium moniliforme var. subglutinans) onslash pines. Can. J. Microbiol. 31:888-892. https://doi.org/10.1139/m85-166
  9. Carvalho, D. D. C., Oliveira1, D. F., Correa, R. S. B., Campos, V.P., Guimaraes, R. M. and Coimbra, J. L. 2007. Rhizobacteriaable to produce phytotoxic metabolites. Braz. J. Microbiol.38:759-765. https://doi.org/10.1590/S1517-83822007000400032
  10. Casellas, M., Grifoll, M., Ayona, J. M. and Solanasi, A. M. 1997.New metabolites in the degradation of fluorene by Arthrobactersp. strain F101. Appl. Environ. Microbiol. 63:819-826.
  11. Chamkha, M., Patel, B. K. C., Garcia, J and Labat, M. 2001. Isolationof Clostridium bifermentans from oil mill wastewatersconverting cinnamic acid to 3-phenylpro pionic acid andemendation of the species. Anaerobe 7:189-197. https://doi.org/10.1006/anae.2001.0382
  12. Chung, B. S., Aslam, Z., Kim, S. W., Kim, G. G., Kang, H. S.,Ahn, J. W. and Chung, Y. R. 2008. A bacterial endophyte,Pseudomonas brassicacearum YC5480 isolated from the rootof Artemisia sp. producing antifungal and phytotoxic compounds.Plant Pathol. J. 24:461-468. https://doi.org/10.5423/PPJ.2008.24.4.461
  13. Cremin, J. D. Jr., Drackley, J. K., Grum, D. E., Hansen, L. R. andFahey, G. C. Jr. 1994. Effects of reduced phenolic acids onmetabolism of propionate and palmitate in bovine liver tissuein vitro. J. Dairy Sci. 77:3608-3617. https://doi.org/10.3168/jds.S0022-0302(94)77305-7
  14. DellaGreca, M., Previtera, L., Purcaro, R. and Zarrelli, A. 2009.Phytotoxic aromatic constituents of Oxalis pescaprae. Chem.Biodivers. 6:459-465. https://doi.org/10.1002/cbdv.200800179
  15. Duijff, B. J., Gianinazzi-Pearsonand, V. and Lemanceau, P. 1997.Involvement of the outer membrane lipopolysaccharides in theendophytic colonization of tomato roots by biocontrol Pseudomonasfluorescens strain WCS417r. New. Phytol. 135:325-334. https://doi.org/10.1046/j.1469-8137.1997.00646.x
  16. Edmund, S., Maria, K. and Krystyna, K. 1971. Production ofinhibitors of auxin and gibberellin induced growth of plants byArthrobacter pascens. Acta. Microbiol. Pol. 3:85-87.
  17. Elson, M. K., Schisler, D. A. and Bothast, R. J. 1997. Selection ofmicrooraganisms for biological control of silver scurf (Helminthosporiumsolani) of potato tubers. Plant Dis. 81:647-652. https://doi.org/10.1094/PDIS.1997.81.6.647
  18. Felsenstein, J. 1985. Confidence limits on phylogenies: an approachusing the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  19. Ferreira, M. I. M., Marchesi, J. R. and Janssen, D. B. 2008. Degradationof 4-fluorophenol by Arthrobacter sp. strain IF1.Appl. Microbiol. Biotechnol. 78:709-717. https://doi.org/10.1007/s00253-008-1343-3
  20. Goodfellow, M. and O'Donell, A. G. 1994. Chemical methods inprokaryotic systems. John Willey & Sons, New York, N. Y.,575 pp.
  21. Guido, F., Roger, A. H., Kathrya, A. B., Gagy, E. P., Georges, W.and Matthew, D. C. 1996. Isolation of Arthrobacter spp. fromclinical specimens and description of Arthrobacter cumminsisp. nov. and Arthrobacter woluwensis sp. nov. J. Clin. Microbiol.34:2356-2363.
  22. Hahlbrock, K. and Scheel, D. 1989. Physiology and molecularbiology of phenyl prorapanoid metabolism. Annu. Rev. PlantPhysiol. Plant Mol. Biol. 40:347-369. https://doi.org/10.1146/annurev.pp.40.060189.002023
  23. Hall, T. A. 1999. BioEdit: a user-friendly biological sequencealignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  24. Jing, Q. Y. and Yoshihisa, M. 1994. Phytotoxic substances in rootexudates of cucumber (Cucumis sativus L.). J. Chem. Ecol.20:21-31. https://doi.org/10.1007/BF02065988
  25. Kageyama, A., Morisaki, K., O mura, S. and Takahash, Y. 2008.Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp.nov.. Int. J. Syst. Evol. Microbiol. 58:53-56. https://doi.org/10.1099/ijs.0.64875-0
  26. Kimura, M. 1983. The neutral theory of molecular evolution.Cambridge: Cambridge University Press.
  27. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysisin bacterial systematics. Methods Microbiol. 19:161-208.
  28. Lane, D. J. 1991. 16S/23S rRNA sequencing. In Nucleic AcidTechniques in Bacterial Systematics, pp. 115-175. Edited by E.Stackebrandt & M. Goodfellow. New York: Wiley.
  29. Lanyi, B. 1987. Classical and rapid identification methods formedically important bacteria. Methods Microbiol. 19:1-67.
  30. Lee, J. S., Lee, K. C., Pyun, Y. R. and Bae, K. S. 2003. Arthrobacterkoreensis sp. nov., a novel alkalitolerant bacteriumfrom soil. Int. J. Syst. Evol. Microbiol. 53:1277-1280. https://doi.org/10.1099/ijs.0.02492-0
  31. Lee, S. O., Choi, G. J., Choi, Y. H., Jang, K. S., Park, D. J., Kim,C. J. and Kim, J. C. 2008. Isolation and characterization ofendophytic actinomycetes from Chinese cabbage roots asantagonists to Plasmodiophora brassicae. J. Microbiol. Biotechnol.18:1741-1746.
  32. Liu, C. H., Chen, X., Liu, T. T., Lian, B., Gu, Y., Caer, V., Xue, Y.R. and Wang, B. T. 2007. Study of the antifungal activity ofAcinetobacter baumannii LCH001 in vitro and identificationof its antifungal components. Appl. Microbiol. Biotechnol.76:459-466. https://doi.org/10.1007/s00253-007-1010-0
  33. Ludmila, K., Peter, S., Eva, D., Cathrin, S., Ivo, S., Jiri, N.,Zbynek, Z. and Miroslav, N. 2004. Arthrobacter nitroguajacolicussp. nov., a novel 4-nitroguaiacol-degrading actinobacterium.Int. J. Syst. Evol. Microbiol. 54:773-777. https://doi.org/10.1099/ijs.0.02923-0
  34. Mao, S., Lee, S. J., Hwangbo, H., Kim, Y. W., Park, K. H., Cha, G.S., Park, R. D. and Kim, K. Y. 2006. Isolation and characterizationof antifungal substances from Burkholderia sp. culturebroth. Curr. Microbiol. 53:358-364. https://doi.org/10.1007/s00284-005-0333-2
  35. Michaud, M. and Martinez, C. 2002. Selection of antagonistmicroorganisms against Helminthosporium solani, causalagent of potato silver scurf. Plant Dis. 86:717-720. https://doi.org/10.1094/PDIS.2002.86.7.717
  36. Moss, C. W., Lambert, M. A. and Goldsmith, D. J. 1970. Productionof hydrocinnamic acid by Clostridia. Appl. Microbiol.19:375-378.
  37. Miller, C. M., Miller, R. V., Garton-Kenny, D., Redgrave, B.,Sears, J., Condron, M. M., Teplow, D. B. and Strobel, G. A.1998. Ecomycins, unique antimycotics from Pseudomonasviridiflava. J. Appl. Microbiol. 84:937-944. https://doi.org/10.1046/j.1365-2672.1998.00415.x
  38. Minnikin, D. E., O'Donell, A. G., Goodfellow, M. and Alderson,G. 1984. An integrated procedure for the extraction of bacterialisoprenoid quinones and polar lipids. J. Microbiol. Methods2:233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  39. Mundt, J. O. and Hinkle, N. F. 1976. Bacteria within ovules andseeds. Appl. Environ. Microbiol. 32:694-698.
  40. Narayana, K. J., Prabhakar, P., Vijayalakshmi, M., Venkateswarlu,Y. and Krishna, P. S. 2007. Biological acitivity of phenylpropionicacid isolated from a terrestrial Streptomycetes. Pol. J.Microbiol. 56:191-197.
  41. Patel, A., Deshattiwar, M., Chaudhari, B. and Chincholkar, S.,2009. Production, purification and chemical characterizationof the catecholate siderophore from potent probiotic strains ofBacillus spp.. Bioresour. Technol. 100:368-373. https://doi.org/10.1016/j.biortech.2008.05.008
  42. Pusey, P. L. 1997. Crab apple blossoms as a model for research onbiological control of fire blight. Phytopathology 87:1096-1102. https://doi.org/10.1094/PHYTO.1997.87.11.1096
  43. Ramasamy, K., Lim, S. M., Bakar, H. A., Ismail, N., Ismail, M. S.Ali, M. F., Weber, J. F. and Cole, A. L. J. 2009. Antimicrobialand cytotoxic activities of malaysian endophytes. Phytother.Res. 24:640-643.
  44. Rosa, M., Peter, S., Cathrin, S. and Anne-Monique, G. 2004.Arthrobacter psychrophenolicus sp. nov., isolated from analpine ice cave. Int. J. Syst. Evol. Microbiol. 54:2067-2072. https://doi.org/10.1099/ijs.0.63124-0
  45. Rosenblueth, M. and Martinez-Romero, E. 2006. Bacterial endophytesand their interactions with hosts. Mol. Plant-MicrobeInteract. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  46. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. and Dowling,D. N. 2008. Bacterial endophytes: recent developments andapplications. FEMS Microbiol. Lett. 278:1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  47. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X.,Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promotegrowth in Arabidopsis. Proc. Nat. Acad. Sci. USA.100:4927-4935. https://doi.org/10.1073/pnas.0730845100
  48. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a newmethod for reconstructing phylogenetic trees. Mol. Biol. Evol.4:406-425.
  49. Siciliano, S. D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S.,Beaumier, D., Ouellette, D., Roy, R., Whyte, L. G., Bankes, M.K., Schwab, P., Lee, K. and Greer, C. W. 2001. Selection ofspecific endophytic bacterial genotypes by plants in responseto soil contamination. Appl. Environ. Microbiol. 67:2469-2475. https://doi.org/10.1128/AEM.67.6.2469-2475.2001
  50. Singh, P. P., Shin, Y. C., Park, C. S. and Chung, Y. R. 1999. Biologicalcontrol of Fusarium wilt of cucumber by chitinolyticbacteria. Phytopathology 89:92-99. https://doi.org/10.1094/PHYTO.1999.89.1.92
  51. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization.In Methods for General and Molecular Bacteriology, pp.607-654. Edited by P. Gerhardt. Washington D.C. Amer. Soc.Microbiol.
  52. Strobel, G. and Daisy, B. 2003. Bioprospecting for microbialendophytes and their natural products. Microbiol. Mol. Biol.Rev. 67:491-502. https://doi.org/10.1128/MMBR.67.4.491-502.2003
  53. Strobel, G., Daisy, B., Castillo, U. and Harper, J. 2004. Naturalproducts from endophytic microorganisms. J. Nat. Prod.67:257-268. https://doi.org/10.1021/np030397v
  54. Sziderics, A. H., Rasche, F., Trognitz, F., Sessitsch, A. and Wilhelm,E. 2007. Bacterial endophytes contribute to abioticstress adaptation in pepper plants (Capsium annuum L.). Can.J. Microbiol. 53:1195-1202. https://doi.org/10.1139/W07-082
  55. Tamaoka, J. and Komagata, K. (1984). Determination of DNAbase composition by reversed-phase high-performance liquidchromatography. FEMS Microbiol. Lett. 25:125-128. https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  56. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) softwareversion 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  57. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. andHiggins, D. G. 1997. The CLUSTAL_X Windows interface:flexible strategies for multiple sequence alignment aided byquality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  58. Vurro, M., Boari, A., Evidente, A., Andolfi, A. and Zermane, N.2009. Natural metabolites for parasitic weed management.Pest. Manag. Sci. 65:556-571.
  59. Williams, R. D. and Hoagland, R. E. 1982. The effect of naturallyoccurring phenolic compounds. Weed Sci. 30:206-212.

피인용 문헌

  1. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions vol.13, pp.11, 2011, https://doi.org/10.1111/j.1462-2920.2011.02582.x
  2. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase vol.35, 2016, https://doi.org/10.1016/j.ymben.2016.02.002
  3. Phytochemicals from the aerial parts of Ligularia thomsonii and their radical scavenging activity vol.7, 2014, https://doi.org/10.1016/j.phytol.2013.09.002
  4. The modulating effect of bacterial volatiles on plant growth vol.7, pp.1, 2012, https://doi.org/10.4161/psb.7.1.18418
  5. Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.OA.06.2011.0123
  6. Bacillusspp. from rainforest soil promote plant growth under limited nitrogen conditions vol.118, pp.3, 2015, https://doi.org/10.1111/jam.12720