소 유방염 원인균에 대한 은이온의 향균력 평가

Evaluation of Bactericidal Capacity of Silver Ion against Bovine Mastitis Pathogens

  • 설재원 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소) ;
  • 허태영 (농촌진흥청 국립축산과학원) ;
  • 정영훈 (농촌진흥청 국립축산과학원) ;
  • 박상열 (헬스케어 기술개발 사업단, 전북대학교 수의과대학 생체안전성 연구소) ;
  • 강석진 (농촌진흥청 국립축산과학원)
  • Seol, Jae-Won (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Hur, Tai-Young (National Institute of Animal Science, Rural Development Administration) ;
  • Jung, Young-Hun (National Institute of Animal Science, Rural Development Administration) ;
  • Park, Sang-Youel (Center for Healthcare Technology Development, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University) ;
  • Kang, Seog-Jin (National Institute of Animal Science, Rural Development Administration)
  • 심사 : 2010.04.09
  • 발행 : 2010.06.30

초록

소 유방염은 주로 세균 감염에 의한 유선조직에 염증이 생기는 질병으로 유방염의 치료와 억제를 위해서는 1차적으로 세균을 사멸시키는데 있다. 본 연구에서는 소 유방염의 원인이 되는 다양한 세균들에 대한 은 이온의 항균효과와 적용 농도를 측정하였다. 유방염 원인균에 대한 은 이온의 최소 억제 농도 (minimal inhibitory concentrations, MICs)와 최소 살균 농도 (minimum bactericidal concentrations, MBCs)를 측정하였으며, 주사전자현미경 (scanning electron microscopy, SEM)을 이용하여 은 이온에 의한 세균의 형태 변화를 확인하였다. 다양한 유방염 원인균에 대한은 이온의 최소 억제 농도와 최소 살균 농도는 1.9에서 15.6 ${\mu}g$/ml로 세균에 따라 차이가 보였으며, 은이온 처리 후 주사전자현미경 촬영 결과 Staphylococcus aureus와 Escherichia coli의 세포벽이 함몰되거나 파괴되는 것을 볼 수 있었다. 이러한 결과는 유방염 원인이 되는 다양한 원인균에 대해 은이온의 살균 효과와 그 적용 농도를 보여주는 것으로, 소 유방염의 치료와 방어를 위한 임상적인 적용 가능성을 보여주는 것이다.

Bovine mastitis, defined as an inflammation of the mammary gland, is usually associated with bacterial infection. Thus, treatment and control of mastitis relies primarily on antimicrobial therapy. This study investigated the bactericidal actions of silver ion against causing various bovine mastitis pathogens. Minimal inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and bactericidal activity times and concentrations of silver ion against pathogens were determined. The effect of silver ion on bacterial morphology was studied by scanning electron microscopy (SEM). The MICs and MBCs of silver ion for various bacteria strains ranged from 1.9-15.6 ${\mu}g$/ml. SEM images indicated formation of a pit, distortion and disruption of cell walls in silver treated Staphylococcus aureus and Escherichia coli. The results demonstrate that silver ion has a bactericidal capacity against causing various pathogens of bovine mastitis and suggest that silver ions may be exploitable as a therapeutic/preventative tool of bovine mastitis.

키워드

참고문헌

  1. Bechert T, Steinrucke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nat Med 2000; 6: 1053-1056. https://doi.org/10.1038/79568
  2. Bennett RM, Christiansen K, Clifton-Hadley RS. Estimating the costs associated with endemic diseases of dairy cattle. J Dairy Res 1999; 66: 455-459. https://doi.org/10.1017/S0022029999003684
  3. Berger TJ, Spadaro JA, Bierman R, Chapin SE, Becker RO. Antifungal properties of electrically generated metallic ions. Antimicrob Agents Chemother 1976; 10: 856-860. https://doi.org/10.1128/AAC.10.5.856
  4. Berger TJ, Spadaro JA, Chapin SE, Becker RO. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 1976; 9: 357-358. https://doi.org/10.1128/AAC.9.2.357
  5. Bramley AJ, Foster R. Effects of lysostaphin on Staphylococcus aureus infections of the mouse mammary gland. Res Vet Sci 1990; 49: 120-121.
  6. Erskine RJ, Wagner S, DeGraves FJ. Mastitis therapy and pharmacology. Vet Clin North Am Food Anim Pract 2003;19: 109-138, vi. https://doi.org/10.1016/S0749-0720(02)00067-1
  7. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000; 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  8. Fox CL, Jr. Silver sulfadiazine--a new topical therapy for Pseudomonas in burns. Therapy of Pseudomonas infection in burns. Arch Surg 1968; 96: 184-188. https://doi.org/10.1001/archsurg.1968.01330200022004
  9. Furr JR, Russell AD, Turner TD, Andrews A. Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. J Hosp Infect 1994; 27: 201-208. https://doi.org/10.1016/0195-6701(94)90128-7
  10. Hotta M, Nakajima H, Yamamoto K, Aono M. Antibacterial temporary filling materials: the effect of adding various ratios of Ag-Zn-Zeolite. J Oral Rehabil 1998; 25: 485-489. https://doi.org/10.1046/j.1365-2842.1998.00265.x
  11. Lansdown AB. Silver. I: Its antibacterial properties and mechanism of action. J Wound Care 2002; 11: 125-130. https://doi.org/10.12968/jowc.2002.11.4.26389
  12. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 1997; 25: 279-283. https://doi.org/10.1046/j.1472-765X.1997.00219.x
  13. Pyorala S. New strategies to prevent mastitis. Reprod Domest Anim 2002; 37: 211-216. https://doi.org/10.1046/j.1439-0531.2002.00378.x
  14. Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagace J. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol 2001; 39: 2584-2589. https://doi.org/10.1128/JCM.39.7.2584-2589.2001
  15. Russell AD, Hugo WB. Antimicrobial activity and action of silver. Prog Med Chem 1994; 31: 351-370. https://doi.org/10.1016/S0079-6468(08)70024-9
  16. Watts DH, Eschenbach DA. Treatment of Chlamydia, Mycoplasma, and group B streptococcal infections. Clin Obstet Gynecol 1988; 31: 435-452. https://doi.org/10.1097/00003081-198806000-00018
  17. Wright JB, Lam K, Hansen D, Burrell RE. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 1999; 27: 344-350. https://doi.org/10.1016/S0196-6553(99)70055-6