Prospects of Application of Linkage Disequilibrium Mapping for Crop Improvement in Wild Silkworm (Antheraea mylitta Drury)

  • Received : 2010.02.25
  • Accepted : 2010.06.02
  • Published : 2010.06.30

Abstract

The wild silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a polyphagous silk producing insect that feeds on Terminalia arjuna, T. tomentosa and Shorea robusta and is distributed in the forest belts in different states of India. Phenotypically distinct populations of the A. mylitta are called "eco-race" or "ecotypes". Genetic improvement of this wild silkworm has not progressed much due to lack of adequate information on the factors that control the expression of most of the economically important traits. Considering the amazing technological advances taking place in molecular biology, it is envisaged that it is now possible to take greater control on these intractable traits if a combination of genetic, molecular and bioinformatics tools are used. Linkage disequilibrium (LD) mapping is one such approach that has extensively been used in both animal and plant system to identify quantitative trait loci (QTLs) for a number of economically important traits. LD mapping has a number of advantages over conventional biparental linkage mapping. Therefore, LD mapping is considered more efficient for gene discovery to meet the challenge of connecting sequence diversity with heritable phenotypic differences. However, care must be taken to avoid detection of spurious associations which may occur due to population structure and variety interrelationships. In this review, we discuss how LD mapping is suitable for the dissection of complex traits in wild silkworms (Antheraea mylitta).

Keywords

References

  1. Akai H (2000) Cocoon filament characters and post cocoon technology. Int J Wild Silk moths silks 5, 255-259.
  2. Arunkumar KP, Tomar A, Daimon T, Shimada T, Nagaraju J (2008) Wild Silk base: An EST data base of wild silk moths. BMC Genet 9, 338. https://doi.org/10.1186/1471-2164-9-338
  3. Arunkumar KP, Kifayathullah L, Nagaraju J (2009) Microsatellite markers for the Indian golden silkmoth, Antheraea assamica (Saturnidae: Lepidoptera). Mol Ecol Res 9, 268-270. https://doi.org/10.1111/j.1755-0998.2008.02414.x
  4. Chatterjee SN, Vijayan KG, Roy C, Nair CV (2004) ISSR profiling of genetic variability in the ecotypes of Anthereae mylitta Drury, the tropical tasar silkworm. Genetica 40, 210-217.
  5. Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N (2000) Extensive genome wide linkage disequilibrium in Cattle. Gen Res. 10, 220-227. https://doi.org/10.1101/gr.10.2.220
  6. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54 , 357-374. https://doi.org/10.1146/annurev.arplant.54.031902.134907
  7. Gaur JP (1992) Races of Antheraea mylitta, the tropical tasar silkworm, their distribution and variability. Ind J Entomol. 54, 275-284.
  8. Ginns EI, Ott J, Egeland JA, Allen CR, Fann CS, Pauls DL, Weissenbachoff J, Carulli JP, Falls KM, Keith TP, Paul SM (1996) A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nat Genet. 12, 431-435. https://doi.org/10.1038/ng0496-431
  9. Gupta RS, (2005) Predicting chromosomal locations of genetically mapped loci in maize genetics. 172, 2007-2009. https://doi.org/10.1534/genetics.105.054155
  10. Hartl DL, Clark AG (1989) Principles of Population Genetics, second edition, Sinauer Associates, Inc., Sunderland, Massachusetts.
  11. Hill WG (1974) Estimation of linkage disequilibrium in randomly mating populations. Heredity 33, 229. https://doi.org/10.1038/hdy.1974.89
  12. Jolly MS, Sen SK, Ashan MM (1974) Tasar Culture. Ambika Publication, Bombay.
  13. Kar PK, Vijayan K, Mohandas TP, Nair CV, Saratchandra B, Thangavelu K (2005) Genetic variability and genetic structure of wild and semi-domestic populations of tasar silkworm (Antheraea mylitta ) ecorace Daba as revealed through ISSR markers. Genetica 125, 73-183.
  14. Kar PK, Srivastava AK, Naqvi AH (2000) Changes in voltinism in some populations of Antheraea mylitta: response to photoperiod. Int. J. Wild Silkmoth Silk 5, 176-178.
  15. Kraakman ATW, Martýnez F, Mussiraliev B, Van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17, 41- 58. https://doi.org/10.1007/s11032-005-1119-8
  16. Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265, 2037-2048. https://doi.org/10.1126/science.8091226
  17. Mackay I, Powell W (2007) Methods for Linkage Disequilibrium Mapping in Crops. Trend Plant Sci 12, 57-63 https://doi.org/10.1016/j.tplants.2006.12.001
  18. Mahendran B, Padhi BK, Ghosh SK, Kundu SC (2006) Genetic variation in ecoraces of tropical tasar silkworm, Antheraea mylitta D. using RFLF technique. Curr Sci 90, 100-103.
  19. Mohandas TP, Vijayan K, Kar PK, Awasthi AK, Saratchandra B (2004) Genetic variability in the natural populations of Daba ecorace of tasar silkworm (Antheraea mylitta Drury), as revealed by ISSR markers. Int J Indust Entamol 8, 11-215.
  20. Mohlke K., Lange EM, Valle TT, Ghosh S, Magnuson VL, Silander K, Watanabe RM, Chines PS, Bergman RN, Tuomilehto Collins J F Boehnke M (2001) Linkage disequilibrium between microsatellite markers extends beyond 1 cm on chromosome 20 in Finns. Genome Res 11, 1221-1226. https://doi.org/10.1101/gr.173201
  21. Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Monographs on Theor. and Applied Genetics 11. Springer-Verlag, New York.
  22. Nayak BK, Dash MC (1991) Environmental regulation of voltinism in Antheraea mylitta Drury (Lepidoptera: Saturniidae), the Indian tasar silk insect; Sericologia 31, 479-486.
  23. Nordborg M, Tavare S (2002) Linkage disequilibrium: what history has to tell us. Trend Genet 18, 83-90. https://doi.org/10.1016/S0168-9525(02)02557-X
  24. Pan F, McMillan L, De Villena FPM, Threadgill D, Wang W (2009) TREEQA: quantitative genome wide association mapping using local perfect phylogeny trees. Pacific Symposium on Biocomputing 14, 415-426.
  25. Peltonen L (2000) Positional cloning of disease genes: advantages of genetic isolates. Hum Hered 50, 66-75. https://doi.org/10.1159/000022892
  26. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum. Genet 65, 220-228. https://doi.org/10.1086/302449
  27. Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
  28. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67, 170-181. https://doi.org/10.1086/302959
  29. Saha M, Kundu SC (2006) Molecular identification of tropical tasar silkworm (Antheraea mylitta) ecoraces with RAPD and SCAR Markers. Biochem Genet 44, 75-88.
  30. Srivastava AK, Naqvi AH, Sinha AK, Viswakarma SR, Roy GC, Sinha BRRP (2002) Biotic diversity and genetic resource conservation of tropical tasar silkworm: national imperatives; in Advances in Indian Sericulture Research. Dandin SB, Gupta VP (eds.), pp: 387-394, Central Sericultural Research and Training Institute, Mysore, India.
  31. Srivastava AK, Naqvi AH, Roy GC, Sinha BRRP (2000) Temporal variation in quantitative and qualitative characters of Antheraea mylitta Drury. Int. J. Wild Silkmoth Silk 5, 54-56.
  32. Srivastava AK, Kar PK, Naqvi AH, Sinha AK, Singh BMK, Sinha BRRP, Thangavelu K (2001) Biochemical variation in ecoraces of Antheraea mylitta: a review. Cytol Genet 10, 359-364.
  33. Srivastava PK, Thangavelu K. (2005) Sericulture and Seribiodiversity. Associated Publishing Company, New Delhi.
  34. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
  35. Vijayan K, Nair CV, PK Kar, Mohandas TP, Saratchandra B, Raje Urs S (2005) Genetic Variability within and among three eco-races of the Tasar silkworm Antheraea mylitta as revealed by ISSR and RAPD markers, Int J Indust Entomol 10, 51-59.
  36. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17, 155-160. https://doi.org/10.1016/j.copbio.2006.02.003
  37. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1, 5-20. https://doi.org/10.3835/plantgenome2008.02.0089