DOI QR코드

DOI QR Code

Production of Antifungal Compost by Using Bacillus licheniformis KJ-9

Bacillus licheniformis KJ-9를 이용한 항균발효퇴비의 생산

  • Seo, Dong-Cheol (Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Ko, Jeong-Ae (Department of Microbiological Engineering, Jinju National University) ;
  • Lee, Sang-Won (Department of Microbiological Engineering, Jinju National University)
  • 서동철 (진주산업대학교 미생물공학과) ;
  • 고정애 (경상대학교 농업생명과학원) ;
  • 이상원 (경상대학교 농업생명과학원)
  • Received : 2010.02.26
  • Accepted : 2010.08.30
  • Published : 2010.09.30

Abstract

In order to produce environmental-friendly fermented compost, a cattle manure-sawdust compost (antifungal compost) was developed by inoculation of B. licheniformis KJ-9 to cattle manure-sawdust. The thermal stability of the antifungal substance produced by B. licheniformis KJ-9 maintained more than 60% antifungal activity with heat treatment at $100^{\circ}C$ for 10 min, and the optimum pH of antifungal activity of the substance was 7.0. In a pot experiment with red pepper, the antifungal compost increased 1.5~2 times in leaf number and stem and root growth rate compared to those of commercial compost. Also, the diameter of stems increased 1.5-3 times in the antifungal compost treated group. The amount of microbes increased markedly in soil supplemented with antifungal compost compared to the control. In the field experiment for cultivation of garlic and Perilla japonica, the growth of both crops was significantly enhanced in the field treated with antifungal compost as compared to the commercial compost.

환경친화적인 항균발효퇴비를 생산할 목적으로 식물병원성 균주에 대하여 항균활성이 우수한 B. licheniformis KJ-9를 톱밥우분에 접종하여 고품질의 항균발효퇴비(B. licheniformis KJ 9 fermented compost, BLC)의 개발을 행하였다. B. licheniformis KJ-9가 생산한 물질의 온도 안정성은 $100^{\circ}C$, 10분간 열처리하여도 약 60% 이상의 항균활성을 유지하였으며, pH 안정성은 산성보다는 pH 7.0 이상의 중성 및 알칼리성 영역에서 높은 항균활성을 유지하였다. 퇴비를 제조하는 과정에서 BLC의 경우는 우분 냄새가 확실히 줄어들었으며 또한 퇴비의 발효시간도 3일 정도 단축되었다. 고추의 pot실험 결과 BLC를 첨가한 시험구 이외의 다른 시험구에서는 고추 잎이 마르고 약간의 황색반점이 발생하였다. 그리고 BLC를 이용한 시험구는 밭 흙만을 사용한 시험구 및 밭 흙에 기존의 판매퇴비(commercial available compost, CC)를 혼합한 시험구보다 잎의 수가 많고(1.5~2배), 줄기 및 뿌리의 성장이 빠르며, 줄기가 굵은(1.5~3배) 것으로 나타났다. 마늘 및 들깨를 재배한 현장적용 실험결과 두 시험구 모두 자연발생적인 병충해의 피해는 없었지만 BLC를 사용한 밭에서 마늘 및 들깨의 생육이 현저하게 빠른 것을 관찰할 수 있었다.

Keywords

References

  1. Baker, R. 1968. Mechanism of biological control of soilborne plant pathogens. Ann. Rev. Phytopathol. 6, 263-294. https://doi.org/10.1146/annurev.py.06.090168.001403
  2. Chang, K. W., J. J. Lee, and J. E. Lee. 2002. Evaluation of safety and fertilizer effect of composts according to rapid fermentation composting of agro․livestock․marine organic waste. J. of Kowrec. 10, 305-311.
  3. Han, K. H., C. U. Lee, and S. D. Kim. 1999. Antagonistic role of chitinase and antibiotic produced by Promicromonospora sp. KH-28 toward F. oxysporum. Korean J. Appl. Microbiol. Biotechnol. 27, 349-353.
  4. Han, K. H. and S. D. Kim. 1999. Selection and identification of Promicromonospora sp. KH-28 producing chitinase and antifungal antibiotic. Korean J. Appl. Microbiol. Biotechnol. 27, 191-196.
  5. Hwang, K. S., B. J. Yoo, and Y. C. Kim. 2006. Growth change of ficus benjamiana affected by application of fowl manure. Korean J. Environ. Agriculture 25, 170-173. https://doi.org/10.5338/KJEA.2006.25.2.170
  6. Kharbanda, P. D., J. Yang, P. Beatty, S. Jensen, and J. P. Tewari. 1997. Potential of a Bacillus sp., to control blackleg and other disease of canola. Phytopathology 87, 51-55.
  7. Kim, H. J., G. J. Park, S. G. Lee, Y. L. Jeong, and J. H. Lee. 1984. Biological control of Finseng root-rot. Korean Ginseng Research Institute.
  8. Kim, Y. S., J. K. Son, D. C. Moon, and S. D. Kim. 1997. Isolation and structure determination of antifungal from Bacillus subtilis YB-70, a powerful agent. Korean J. Appl. Microbiol. Biotechnol. 25, 62-67.
  9. Ko, J. A., D. C. Seo, S. W. Gal, and S. W. Lee. 2010. Characterization of Bacillus licheniformis KJ-9 isolated from soil. J. Life Sci. 20, 403-410. https://doi.org/10.5352/JLS.2010.20.3.403
  10. Korean association of agrochemical industry. 1993. Reduction by pest and pathogen in non-agrochemical cultivation. Agrochemials Information 14, 13-15.
  11. Kwak, M. S., S. G. Lee, S. C. Jeong, S. H. Suh, J. H. Lee, Y. J. Jeon, Y. H. Kim, and M. H. Sung. 1999. Screening and Taxonomic characterization of D-amino acid aminotransferase producing thermophiles. Korean J. Appl. Microbiol. Biotechnol. 27, 184-190.
  12. Liu, Y. Q. W., Y. P. Pan, and Z. L. Chen. 1994. Identification of antagonistic strain TG26 and purification of its antifungal protein BI. Acra Botanica Sinica. 36, 197-203.
  13. Lorito, M., G. E. Harman, C. K. Hayes, R. M. Broadway, A. Tronsmo, S. L. Woo and D. A. Pietro. 1993. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83, 302-307. https://doi.org/10.1094/Phyto-83-302
  14. Min, K. B. and S. D. Hong. 1996. Effect of different fermented manure-sawdust composts application on chinese cabbage yield. J. Agr. Sci. Chungbuk Nat'l. Univ. 13, 3-11.
  15. Park, S. K., H. S. Ryu, and S. W. Lee. 2008. Characterization of an antibacterial substance produced by Bacillus subtilis HS 25 isolated from fermented soybean foods. Korean J. Food Preserv. 15, 300-305.
  16. Piva, A. and D. R. Hedadon. 1994. Pediocin A, a bacteriocin produced by Pediococcus pentosaceus FBB61. Microbiology 140, 697-702. https://doi.org/10.1099/00221287-140-4-697
  17. Siegelm, M. and H. D. Sisker. 1977. Antifungal compounds, pp. 227-236, Vol 2. Interactions in Ecological System.
  18. Yu, G. Y. and J. B. Sinclair. 1997. Purification and identification of an antifungal protein produced by a poential biocontrol agent Bacillus amyloliquefaciens B94. Phytopathology 87, 107-112.
  19. Yun, G. H., E. T. Lee, and S. D. Kim. 2001. Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Korean J. Appl. Microbiol. Biotechnol. 29, 186-193.