DOI QR코드

DOI QR Code

Spatial Autocorrelation Analysis of Carex humilis on Mt. Giri by RAPD

RAPD에 의한 지리산 내 산거울 집단의 공간적 상관관계 분석

  • Lee, Bok-Kyu (Department of Molecular Biology, Dongeui University) ;
  • Lee, Byeong-Ryong (Department of Science Education (Biology), Seowon University) ;
  • Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
  • Received : 2010.05.19
  • Accepted : 2010.09.03
  • Published : 2010.09.30

Abstract

The spatial distribution of alleles and geographical distances of a Carex humilis population on Mt. Giri in Korea were studied. A total of 102 DNA fragments (bands) were found among 107 plants. Among these 102 bands, 48 (47.1%) bands were polymorphic. In a simple variability of subpopulations by the percentage of polymorphic bands, distances I and V exhibited the lowest variation (16.7%). Distance VIII showed the highest variation (22.6%). The total genetic diversity (H) was 0.076 across species. Class VIII had the highest H (0.093), while class I had the lowest (0.063). Genetic similarity of individuals was found among subpopulations at up to a scale of 60 m distance, and this was partly due to a combination of alleles. Within the Mt. Giri population, a strong spatial structure was observed for RAPD markers, indicating a very low amount of migration among subpopulations and that the distribution of individual genotypes of a given population was clumped. The present study demonstrated that analysis of RAPD markers could be successfully used to study the spatial and genetic structures of C. humilis.

RAPD에 의한 지리산 내 산거울 집단의 유전자 빈도와 지리적 거리에 따른 공간적 상관관계를 분석하였다. 전체 102 DNA 분절(밴드)이 107 개체에서 탐지되었다. 102 밴드 중 48(47.1%)개 밴드는 다형성을 나타내었다. 분집단간 다형성의 비교에서 거리 구간 I와 V가 가장 낮은 변이(16.7%)를 나타내었고, 거리 구간 VIII이 가장 높은 변이를 나타내었다(22.6%). 전체 다양도는 0.076이었다. 구간 VIII이 가장 높은 다양도(0.093)를 나타내었고, 구간 I가 가장 낮았다(0.063). 구간 사이의 유전적 유사도는 60 m 거리까지는 유사하였다. 지리산 집단에서 산거울은 강한 공간구조를 나타내고 있음이 RAPD 마커로 알 수 있었다. 이는 지리산 집단에서 낮은 이주자수와 개체들이 덩어리 모양의 분포를 나타내기 때문으로 판단된다. 본 연구에서 RAPD 마커로 산거울의 공간구조와 유전적 구조를 파악하는데 유용하게 이용될 수 있음을 입증하였다.

Keywords

References

  1. Argyres, A. Z. and J. Schmitt. 1991. Microgeographic genetic structure of morphological and life history traits in a natural population of Impatiens capensis. Evolution 45, 178-189. https://doi.org/10.2307/2409492
  2. Beebe, S., P. W. Skroch, J. Tohme, M. C. Duque, F. Pedraza, and J. Nienhuis. 2000. Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci. 40, 264-273.
  3. Cassens, I., R. Tiedemann, F. Suchentrunk, and G. B. Hartl. 2000. Mitochondrial DNA variation in the European otter (Lutralutra) and the use of spatial autocorrelation analysis in conservation. J. Hered. 91, 31-34. https://doi.org/10.1093/jhered/91.1.31
  4. Demeke, T., R. P. Adams, and R. Chibbar. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theor. Appl. Genet. 84, 990-994.
  5. Dewey, S. E. and J. S. Heywood. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42, 834-838. https://doi.org/10.2307/2408877
  6. Epperson, B. K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics 124, 757-771.
  7. Epperson, B. K. 1995. Fine-scale spatial structure: correlations for individual genotypes differ from those for local gene frequencies. Evolution 49, 1022-1026. https://doi.org/10.2307/2410424
  8. Epperson, B. K. and R. W. Allard. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121, 369-377.
  9. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 43-63, In Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir (eds.), plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, MA.
  10. Huh, M. K. 2001. Allozyme variation and population structure of Carex humilis var. nana (Cyperaceae) in Korea. Can. J. Bot. 79, 457-463. https://doi.org/10.1139/cjb-79-4-457
  11. Levin, D. A. and H. W. Kerster. 1974. Gene flow in seed plants. Evol. Biol. 7, 139-220.
  12. Ohsawa, R., N. Furuya, and Y. Ukai. 1993. Effects of spatially restricted pollen flow on spatial genetic structure of an animal- pollinated allogamous plant. Heredity 71, 64-73. https://doi.org/10.1038/hdy.1993.108
  13. Sakai, R. R. and N. L. Oden. 1983. Spatial pattern of sex expression in silver maple (Acer saccharium L.): Morisita's index and spatial autocorrelation. Am. Nat. 122, 489-508. https://doi.org/10.1086/284151
  14. Slatkin, M. 1987. Gene flow and geographic structure of natural populations. Science 236, 787-792. https://doi.org/10.1126/science.3576198
  15. Sokal, R. R. and N. L. Oden. 1978a. Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soc. 10, 199-228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
  16. Sokal, R. R. and N. L. Oden. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10, 229-249. https://doi.org/10.1111/j.1095-8312.1978.tb00014.x
  17. Stewart, C. N. and L. Excoffier. 1996. Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American Cranberry). J. Evol. Biol. 9, 153-171. https://doi.org/10.1046/j.1420-9101.1996.9020153.x
  18. Van Dijk, H. 1987. A method for the estimation of gene flow parameters from a population structure caused by restricted gene flow and genetic drift. Theor. Appl. Genet. 73, 724-736. https://doi.org/10.1007/BF00260783
  19. Waser, N. M. and M. Price. 1983. Optimal and actual outcrossing in plants, and the nature of plant pollinator interactions, pp. 341-360, In Jones, C. E. and R. J. Little (eds.), handbook of experimental pollination biology. Van Nostrand Reinhold, NY.
  20. Wright, S. 1978. Evolution and the genetics of populations. Vol. 4, Variability within and among natural populations. pp. 580, Univ. Chicago Press, Chicago, IL.
  21. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.