DOI QR코드

DOI QR Code

미검침 고객의 가상 부하패턴 생성을 위한 고객 속성 정보를 이용한 고객 분류 기법

Customer Classification Method Using Customer Attribute Information to Generate the Virtual Load Profile of non-Automatic Meter Reading Customer

  • 김영일 (한국전력공사 전력연구원) ;
  • 고종민 (한국전력공사 전력연구원) ;
  • 송재주 (한국전력공사 전력연구원) ;
  • 최훈 (충남대학교 컴퓨터공학과)
  • 투고 : 2010.07.06
  • 심사 : 2010.09.16
  • 발행 : 2010.10.01

초록

To analyze the load of distribution line, real LPs (Load Profile) of AMR (Automatic Meter Reading) customers and VLPs (Virtual Load Profile) of non-AMR customers are required. Accuracy of VLP is an important factor to improve the analysis performance. There are 2 kinds of methods to generate the VLP; one is using ALP (Average Load Profile) per each industrial code and PNN (Probability neural networks) algorithm; the other is using LSI (Load Shape Index) and C5.0 algorithm. In this paper, existing researches are studied, and new method is suggested. Each methods are compared the performance with same LP data of real high voltage customers.

키워드

참고문헌

  1. 김영일, 신진호, 이봉재, 양일권, "자동검침 고객의 부하 패턴을 이용한 일일 대표 부하패턴 생성", 대한전기학회논문지, 2008, 제57권, 9호, pp. 1516-1521.
  2. 윤상윤, 김재철, "수용가 전력 소비 패턴을 고려한 배전용 변압기 과부하 판정기준", 대한전기학회논문지, 2004, 제53권 9호, pp. 513-520.
  3. 김영일, 송재주, 오도은, 정남준, 양일권, "일일 대표 부하패턴의 분별력을 높이기 위한 반복적인 소규모 군집화를 이용한 고객 군집화 방법", 대한전기학회논문지, 2009, 제58권, 11호, pp. 2269-2274.
  4. David Gerbec, Samo Gasperic, Ivan Smon, and Ferdinand Gubina, "Allocation of the Load Profiles to Consumers Using Probabilistic Neural Networks", IEEE Transactions on Power Systems, Vol. 20, No. 2, May 2005, pp. 548-555. https://doi.org/10.1109/TPWRS.2005.846236
  5. Vera Figueiredo, Fatima Rodrigues, Zita Vale, and Joaquim Borges Gouveia, "An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques", IEEE Transactions on Power Systems, Vol. 20, No 2, May 2005, pp. 596-602. https://doi.org/10.1109/TPWRS.2005.846234
  6. H. Demuth and M. Beale, Neural Network Toolbox for Use With MATLAB. Natick, MA: MathWorks, Jun. 2001.
  7. R. N. Davé and R. Krishnapuram, "Robust clustering methods: a unified view," IEEE Transactions on Fuzzy Systems, vol. 5, no. 2, May 1997, pp. 270-293. https://doi.org/10.1109/91.580801
  8. Jain A. K. and Dubes R.C., 1988. "Algorithms for Clustering Data," Englewood Cliffs, NJ: Prentice-Hall.
  9. M. Ernoult and F. Meslier, "Analysis and forecast of electrical energy demand," Revue General d'Electricite, no. 4, 1982.
  10. R. Quinlan, The Book C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1993.
  11. I. Witthen and E. Frank, Data Mining-Practical Machine Learning Tools and Techniques With Java Implementations. New York and San Mateo, CA: Morgan Kaufmann Publishers, Academic Press, 2000.