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VLSI Implementation for the MPDSAP Adaptive Filter

Hun Choi’, Young-Min Kim", Hong-Gon Ha"

Abstract
A new implementation method for MPDSAP(Maximally Polyphase Decomposed Subband Affine Projection)
adaptive filter is proposed. The affine projection{AP) adaptive filter achieves fast convergence speed, however,
its implementation is so expensive because of the matrix inversion for a weight-updating of adaptive filter.
The maximally polyphase decomposed subband filtering allows the AP adaptive filter to avoid the matrix
inversion, moreover, by using a pipelining technique, the simple subband structured AP is suitable for VLSI
implementations concerning throughput, power dissipation and area. Computer simulations are presented to

verify the performance of the proposed algorithm.
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1. Introduction

It is well-known that affine projection (AP) adaptive
filter is a generalized version of the normalized least
mean square (NLMS) adaptive filter, and in application
such as noise cancellation, identification,
channel equalization, etc[1-10].
subband AP (SAP) adaptive filter was suggested in
[91[10]. The new SAP algorithm is based on the
subband structure[12] that uses sufficiently decomposed
adaptive sub~filters with the polyphase decomposition
and the noble identity[13). It can result in RLS-like
performance with LMS-like computational complexity.

In hardware implementation of SAP adaptive filter,

system
Recently, a new

however, computational complexities for the weight
updating is still big a burden.

In this paper, we present a new design technique
based on a hardware-efficiency and implementation
flexibility for the SAP adaptive filter. As adaptive
sub-filters are decomposed sufficiently into polyphase
components, the weights of adaptive sub-filters can be
updated by a simple weight-updating formula without
a matrix inversion. In addition, by using a pipelining
MPDSAP s VLSI
implementations. The pipelining of shorter sub-filters

technique, the suitable for

will  require a smaller number of delays for

weight-updating and then they will not be much
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Fig.1l. System identification model with subband adaptive

filter [12]

affected by the performance degradation due to
pipelining delays. To evaluate the performance of the
proposed pipelined MPDSAPPIPMPDSAP), computer
simulations are performed for the system identification
in acoustic echo cancellation scenario.

II. MPDSAP Adaptive Filter

Consider the subband adaptive acoustic echo
cancellation (SAEC) system and the block diagrams of
system identification for the SAEC in M-subband
In [14], the

excellency of this subband structure has been fully

structure  [12] as shown in Fig. 1
analyzed. This subband structure is always alias—free
and stable. It is, and also, reasonable for
implementation.

In Fig. 1, z(n)=a"gn)+f(n) where the input
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sequence 1z{n)} is assumed to have zero mean with
agpyy)’, where P is

(AR)
gln—L4+1D]" are L samples

variance o2, @= [a(u) ()

autoregressive Process.

order of
g=lgln) gln—1)
from an underlying zero mean and unit variance ild
random sequence {g(n)} and f(n) is a WSS white
process with variance o} d(n) =w "z(n)+r(n) are
input signal and desired signal, respectively. w is the echo
path that we wish to estimate and r(n) is measurement
noise that is the independent identically distributed (iid)
random signal with zero mean and variance of. Using
orthonormal analysis filters by, ... by, the input signal u(k)
and the desired signal d(n) are partitioned into new signals
denoted by ;(n) =hlz(n) and d;,(n) =hTd(n) for

z(n) =[z(n)z(n—1) .. z(m—P+1)]” and
d(n) =ld(n)d(n—1) ... dln—P+1)]", respectively.

In Fig. 1, the decimated signal z;;(k) =z, (Mk—n) is the
subband polyphase components of z;(k). The polyphase
component vectors of the subband inputs can be
presented by z;(k) =z (k) =;;(k—1) . k=BT .
The subscript #j is the subband decomposed polyphase
ey, M-1) and P, is both the

order of the subband-partitioned AR process and the
order of projection in each subband. The adaptive
w; (k) subband

desired signals d;(k) which are linearly related to the

index (¢ and 7 = 0, 1,

sub~filters attempt to estimate a

subband-~partitioned input signals 2;(k). In M-subband
structure, the adaptive filter can be represented in
terms of polyphase components [13] as

Wz) = Wy(z") + 27 WG + 2 (M) ()

and its weight-updating formula is given by [9],[10]

w(k+1) = w, (k) +pXk) T 7' (k) E(k) 2
where

w,(k) = [wg (k) wilk) . wh_ ()] (3)

Xoolk) Xiolk) Xopraplk)
Xk = Xm'(k) Xil(k) X(M—lh(k) 4

Xotaa1y(8) Kour—(K) - Xons1y(aa-1)(F)
Xik) =lzk) z(k—1) - z,(k—P)] 5

Afk) 0 - 0

= 0 AR ; (©)

0 - 0 Aprne

A1
Ak) = _O&ﬂk)xz,-(zs) @)
eg(k)
Hk) = &1(:’“) ®)
ere1(k)
M1
e=dk) = 33 X (k)wj(k) ©)

IlI. Pipelined MPDSAP Adaptive Filter

A. MPDSAP Adaptive Filter

In the conventional AP (fullband AP), AR(P) input
signal is decorrelated by the F times projection
operations with the corresponding past £ input vectors.
In SAP, whereas, the lower order of projection is
sufficient for the signal-decorrelating.

That is, £F, <P Because the
pre-whitened by the subband partitioning and then, the
dynamic range of the subband input is

input signal is

spectral
decreased.

Moreover, the length of the adaptive sub-filter
N.=N/M by

decomposition and the noble identity to the maximally

becomes polyphase

applying the
decimated adaptive filter.

The projection order is typically much smaller than
the length of the adaptive filter. Therefore, the SAP
algorithm can be simplified by partitioning the P-order
fullband AP into P-subbands.

Consequently, the projection order for the shortened
adaptive sub-filter can become F,= P/M When the
data matrix is ANx(P+1) in the
conventional AP, it can become
N x{P +1) = (N M <{(PIM) in SAP. When the
(P=2), by partitioning into
two-subbands, the projection order for SAP becomes
unit (Ps=1).

From eq. (2), therefore, each adaptive sub-filter is

size of the

projection order is 2

simply rewritten as

=1 X (ke (k)
wk+1) =w k) +p Y, {ir(,f;-“
=0 (’Ij :

} fori= 0,1, ... M—1
(10

where oi}(k) is the variance of input signal in each
subband.

This MPDSAP updates the weights of adaptive
sub~filters with A/P>1 data vectors instead of data
matrices[12].

B. Pipelined MPDSAP Adaptive Filter
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The MPDSAP algorithm as shown in eq. (10) has
very simple forms.

Since its weight~updating is the
recursion form, the MPDSAP algorithm can be easily
realized by pipelining.

Applying K-stage look-ahead [15, 16] to eq. (2), we

first—order

can get
K1
wk+1) =wlk—K+1)+ p Y Xk~ K+t+1)
$=xf)
X Mk—K+t+1)Bk— K+t+1) (1)

In eq. (11), the pipelined SAP maintains the
functionality of input-output behavior, For
implementation, however, it has a difficult problem that
is the increment of hardware cost. The relaxed
look-ahead [17] is proposed for reducing the hardware
cost. First, by applying the delay and sum relaxations

to eq. (11), we obtain
LA—1
wlk+1) = wlk~K+1)+ [”4 3 X(k—D, +t+1)
A=

X IO " Yk— D, +t+1)Ek—D,+t+1) (12)

where LA <K K.

In eq. (12), if step size u is replaced by £ including
the term LA, we can obtain the pipelined MPDSAP
(PIPMPDSAP) following as

LA

w(k+1) =wlk—K+1)+0 >, Xk~ D, +t+1)

t=iy

X I " Mk— D, +t+1)Ek—D +t+1) (13)

By applying the relaxation technigue to eq. (9), the
subband error vector of eq. (8) is represented as

Ek) =Dk) — X1 k)wlk)

D) - XT R (b= B +5 S XTh— Dy 1)
X T~ (k= D, +t) Bk — D, +1)]
= D) — XTk)w(k—K+1) (14)

where <1 and wlk— K+1) = wlk—K).

From eq. (13), the D,-stage relaxed look~ahead
pipelined MPDSAP adaptive filters are updated by eq.
(15), and the architecture of eq. (15) is shown in Fig.
2. D, and D), are the delay factors.

In eq. (15), to reduce the complexity of the
. . . . 2 7
implementation, the powers of input signals, 0223%) are

replaced by
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Fig,2. The D,-step pipelined structure for updating wy
of the proposed PIPMPDSAP in the two subband
adaptive system identification model (F, =1,M=2,

PNBIlock : Power Normalization Block, SRLABIock

Sum Relaxed Look Ahead Block, DRLABlock © Delay

Relaxed Look Ahead Block)

wilk+1) =w;(k— Dy+1)
LAV N uy (k= Dy +t+1)e, (k— D+t +1)

48 Lt (15)
;::1) j=0 52;‘ +6§j

8 (k) =(~a)& (k—1)+aX,k) (16)
where Zandj=1,2, .. M—-1 , o is a forgetting

factor, and 0 <ea <1. From Fig. 2, we know that the
proposed PIPMPDSAP adaptive filter has a simple
as normalized LMS

weight-updating formula such

(NLMS).
IV Simulation Results

To evaluate the performances of the proposed

PIPMPDSAP, we carry out computer simulations in
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Fig.3. MSE curves of the proposed PIPMPDSAP and
PIPNLMS for real echo path (Input @ AR() and AR(4)

with SNR = 30dB, & = 64, D, = 8, I}, = 4, LA =2 )
acoustic  echo cancellation scenario. The unknown
system is an actual impulse response of the echo path
in a room, sampled at 8 kHz and truncated to 32
(N=32)
experiments, we use the cosine modulated filter banks
(CMFB) [13]. For efficient subband decomposition of
input lengths of analysis filters are
increased with M so that the ratio of the transition
band to the passband is maintained nearly the same

samples. For  signal-partitioning in all

signals, the

for all values of M. The prototype filters’ lengths are
32 and 64 for M = 2 and 4, respectively. The input
signals are zero mean wide sense stationary AR(P)
The coefficients

AR()  and

and a real speech sampled at 8 kHz.
of AR®P) are a=0109" for
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Fig.d. MSE curves of the D,-step PIPMPDSAP for
different lengths of adaptive filter (Input : AR4), NV =
16 and 32, D, =8 D, =4, LA =2)

a=[10.999 0.99 0.995 0.9]" for AR(4). The modeling
noise signal, f{k), is zero mean and unit variance white
Gaussian random process. The measurement noise,
r(k), is added to desire signal d(k) such that SNR =
30dB. In acoustic echo cancellation systems as shown
in Fig. 1, we compare the mean square error (MSE)
(ERLE)}
proposecd

and the echo return loss enhancement
performances of the PIPNLMS and the
PIPMPDSAP algorithm.

The step sizes are set to #=0.1, p=0.05, and
©#=0.025 for PIPNLMS, M=2 PIPMPDSAP, and M=4
PIPMPDSAP,
assume that the double talk condition is not active.

respectively. In all experiments, we
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Fig.5. ERLE curves of the proposed PIPMPDSAP and
PIPNLMS (N = 64, L} = 8 1) = 4, LA =2 )

A.  Convergence MPDSAP

Adaptive Filter

Fig. 3 shows the MSE curves of the PIPMPDSAP
and PIPNLMS with AR(l) and AR(4)
respectively. The parameters for the pipelining delay
are set to I, =8, D,=4, and LA=2. The convergence
rate of the proposed PIPMPDSAP goes up with M In
the proposed PIPMPDSAP, the increment of M allows
the adaptive sub-filter to use a higher projection order
with small computational complexity.

We evaluated the convergence performances of the
PIPMPDSAP for different length of the adaptive filter.
Fig. 4 shows the MSE performances of PIPMPDSAP.
In Fig. 4, the unknown system to be identified are
length N = 16 and 32 FIR filters with coefficients
chosen randomly. The input signals are AR(4) with
SNR=30dB. In Fig. 4, the convergence rate of
PIPMPDSAP decreases with the increment of N,
however, PIPMPDSAP with large M is not much
affected by the performance degradation, because the
input signal is sufficiently whitened by the subband

Performance of The

inputs

partitioning.

B. ERLE Performance of The
Filter

Fig., 5 shows the ERLE
PIPNLMS and the proposed method for
numbers of subbands (M=2, 4, and 8). The input signals
are AR(4) processors with SNR=30dB. From these
results, we can doubtless know that the convergence

MPDSAP Adaptive

performances of the
different

rate of adaptive filter is improved by the subband
filtering and speeds up with the increment of A4

V. Conclusions

In this paper, we present a new pipelined structure
for a practical implementation of subband affine
projection algorithm. The SAP algorithm can be
simplified by partitioning over the number of subbands
as the projection order and the weight-updating
formula of the MPDSAP is suitable for pipelining, The
pipelined MPDSAP (PIPMPDSAP) achieves better
performances than the pipelined NLMS (PIPNLMS). In
PIPMPDSAP, shorten adaptive sub-filters are not
much affected by the performance degradation due to
pipelining delays because they smaller
number of delays for weight-updating. Several
simulation results support the theoretical predictions
and show the improved performances.

require a
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