DOI QR코드

DOI QR Code

Biochemical and Structural Analysis of Hormone-sensitive Lipase Homolog EstE7: Insight into the Stabilized Dimerization of HSL-Homolog Proteins

  • Nam, Ki-Hyun (Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University) ;
  • Park, Sung-Ha (Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University) ;
  • Lee, Won-Ho (Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University) ;
  • Hwang, Kwang-Yeon (Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University)
  • Received : 2010.03.25
  • Accepted : 2010.06.07
  • Published : 2010.09.20

Abstract

Hormone sensitive lipase (HSL) plays a major role in energy homeostasis and lipid metabolism. Several crystal structures of HSL-homolog proteins have been identified, which has led to a better understanding of its molecular function. HSL-homolog proteins exit as both monomer and dimer, but the biochemical and structural basis for such oligomeric states has not been successfully elucidated. Therefore, we determined the crystal structure of HSL-homolog protein EstE7 from a metagenome library at $2.2\;{\AA}$ resolution and characterized the oligomeric states of EstE7 both structurally and biochemically. EstE7 protein prefers the dimeric state in solution, which is supported by its higher enzymatic activity in the dimeric state. In the crystal form, EstE7 protein shows two-types of dimeric interface. Specifically, dimerization via the external ${beta}8$-strand occurred through tight association between two pseudosymmetric folds via salt bridges, hydrogen bonds and van der Waals interactions. This dimer formation was similar to that of other HSL-homolog protein structures such as AFEST, BEFA, and EstE1. We anticipate that our results will provide insight into the oligomeric state of HSL-homolog proteins.

Keywords

References

  1. Osterlund, T. Eur. J. Biochem. 2001, 268, 1899-1907. https://doi.org/10.1046/j.1432-1327.2001.02097.x
  2. Yeaman, S. J.; Smith, G. M.; Jepson, C. A.; Wood, S. L.; Emmison, N. Advances in Enzyme Regulation 1994, 3434, 355-370.
  3. Raclot, T.; Holm, C.; Langin, D. Biochim. Biophys. Acta 2001, 1532, 88-96. https://doi.org/10.1016/S1388-1981(01)00119-6
  4. Wei, Y.; Contreras, J. A.; Sheffield, P.; Osterlund, T.; Derewenda, U.; Kneusel, R. E.; Matern, U.; Holm, C.; Derewenda, Z. S. Nat. Struct. Biol. 1999, 6, 340-345. https://doi.org/10.1038/7576
  5. De Simone, G.; Galdiero, S.; Manco, G.; Lang, D.; Rossi, M.; Pedone, C. J. Mol. Biol. 2000, 303, 761-771. https://doi.org/10.1006/jmbi.2000.4195
  6. De Simone, G.; Menchise, V.; Manco, G.; Mandrich, L.; Sorrentino, N.; Lang, D.; Rossi, M.; Pedone, C. J. Mol. Biol. 2001, 314, 507-518. https://doi.org/10.1006/jmbi.2001.5152
  7. De Simone, G.; Menchise, V.; Alterio, V.; Mandrich, L.; Rossi, M.; Manco, G.; Pedone, C. J. Mol. Biol. 2004, 343, 137-146. https://doi.org/10.1016/j.jmb.2004.08.014
  8. Mandrich, L.; Menchise, V.; Alterio, V.; De Simone, G.; Pedone, C.; Rossi, M.; Manco, G. Proteins 2008, 71, 1721-1731. https://doi.org/10.1002/prot.21877
  9. Nam, K. H.; Kim, M. Y.; Kim, S. J.; Priyadarshi, A.; Kwon, S. T.; Koo, B. S.; Yoon, S. H.; Hwang, K. Y. Proteins 2009, 74, 1036-1040. https://doi.org/10.1002/prot.22313
  10. Nam, K. H.; Kim, M. Y.; Kim, S. J.; Priyadarshi, A.; Lee, W. H.; Hwang, K. Y. Biochem. Biophys. Res. Commun. 2009, 379, 553-556. https://doi.org/10.1016/j.bbrc.2008.12.085
  11. Byun, J. S.; Rhee, J. K.; Kim, N. D.; Yoon, J.; Kim, D. U.; Koh, E.; Oh, J. W.; Cho, H. S. BMC Struct. Biol. 2007, 7, 47. https://doi.org/10.1186/1472-6807-7-47
  12. Fernandez, L.; Beerthuyzen, M. M.; Brown, J.; Siezen, R. J.; Coolbear, T.; Holland, R.; Kuipers, O. P. Applied and Environmental Microbiology 2000, 66, 1360-1368. https://doi.org/10.1128/AEM.66.4.1360-1368.2000
  13. Otwinowski, Z.; Minor, W. Macromolecular Crystallography 1997, 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  14. Vagin, A.; Teplyakov, A. Journal of Applied Crystallography 1997, 30, 1022-1025. https://doi.org/10.1107/S0021889897006766
  15. Winn, M. D.; Murshudov, G. N.; Papiz, M. Z. Methods Enzymol. 2003, 374, 300-321. https://doi.org/10.1016/S0076-6879(03)74014-2
  16. Vaguine, A. A.; Richelle, J.; Wodak, S. J. Acta Crystallographica Section D-Biological Crystallography 1999, 55, 191-205. https://doi.org/10.1107/S0907444998006684
  17. Emsley, P.; Cowtan, K. Acta Crystallographica. Section D-Biological Crystallography 2004, 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  18. Davis, I. W.; Leaver-Fay, A.; Chen, V. B.; Block, J. N.; Kapral, G. J.; Wang, X.; Murray, L. W.; Arendall, W. B.; Snoeyink, J.; Richardson, J. S.; Richardson, D. C. Nucleic Acids Res. 2007, 35, 375-383. https://doi.org/10.1093/nar/gkm216
  19. Dodson, E. J.; Winn, M.; Ralph, A. Methods Enzymol. 1997, 277, 620-633. https://doi.org/10.1016/S0076-6879(97)77034-4
  20. Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. Acta Crystallogr. D. Biol. Crystallogr. 1998, 54, 905-921. https://doi.org/10.1107/S0907444998003254
  21. Krissinel, E.; Henrick, K. J. Mol. Biol. 2007, 372, 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
  22. Holm, L.; Kaariainen, S.; Rosenstrom, P.; Schenkel, A. Bioinformatics 2008, 24, 2780-2781. https://doi.org/10.1093/bioinformatics/btn507
  23. Shen, W. J.; Patel, S.; Hong, R.; Kraemer, F. B. Biochemistry 2000, 39, 2392-2398. https://doi.org/10.1021/bi992283h
  24. Shire, S. J.; Shahrokh, Z.; Liu, J. J. Pharm. Sci. 2004, 93, 1390-1402. https://doi.org/10.1002/jps.20079

Cited by

  1. Triglycine-Based Approach for Identifying the Substrate Recognition Site of an Enzyme vol.9, pp.9, 2010, https://doi.org/10.3390/cryst9090444