DOI QR코드

DOI QR Code

Effects of Ion and Protic Solvent on Nucleophilic Aromatic Substitution (SNAr) Reactions

  • Park, Sung-Woo (Department of Applied Chemistry, Kyung Hee University) ;
  • Lee, Sung-Yul (Department of Applied Chemistry, Kyung Hee University)
  • Received : 2010.05.10
  • Accepted : 2010.07.26
  • Published : 2010.09.20

Abstract

We investigate the mechanism of $S_NAr$ fluorination reactions under the influence of protic solvents and ions. We find that counterion or protic solvent alone retards the $S_NAr$ reactions, but together they may promote the reaction. In this mechanism, the protic solvent acts on the counterion as a Lewis base, and the nucleophile reacts as an ion pair. We also show that an anion (mesylate) may exhibit catalytic effects, suggesting the role of ionic liquids for accelerating the $S_NAr$ reactions.

Keywords

References

  1. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem. Int. Ed. 2008, 47, 8998. https://doi.org/10.1002/anie.200800222
  2. Manka, J. T.; Mckenzle, V. C.; Kaszynski, P. J. Org. Chem. 2004, 69, 1967. https://doi.org/10.1021/jo0302399
  3. Peishoff, C. E.; Jorgensen, W. L. J. Org. Chem. 1985, 50, 1056. https://doi.org/10.1021/jo00207a030
  4. Glukhovtsev, M. N.; Bach, R. D.; Lalter, S. J. Org. Chem. 1997, 62, 4036. https://doi.org/10.1021/jo962096e
  5. Acevedo, O.; Jorgensen, W. L. Org. Lett. 2004, 6, 2881. https://doi.org/10.1021/ol049121k
  6. Adam, C. G.; Fortunato, G. G.; Mancini, P. M. J. Phys. Org. Chem. 2009, 22, 460. https://doi.org/10.1002/poc.1501
  7. Terrier, F. Chem. Rev. 1982, 82, 77. https://doi.org/10.1021/cr00048a001
  8. Ermert, J.; Hocke, C.; Ludwig, T.; Gail, R.; Coenen, H. H. J. Label. Compd. Radiopharm 2004, 47, 429. https://doi.org/10.1002/jlcr.830
  9. Pawlas, J.; Vedso, P.; Jakobsen, P.; Huusfeldt, P. O.; Begtrup, M. J. Org. Chem. 2002, 67, 585. https://doi.org/10.1021/jo010395k
  10. Kim, D.-W.; Ahn, D.-S.; Oh, Y.-H.; Lee, S.; Kil, H.-S.; Oh, S.-J.; Lee, S.-J.; Kim, J.-S.; Ryu, J.-S.; Moon, D.-H.; Chi, D.-Y. J. Am. Chem. Soc. 2006, 128, 16394. https://doi.org/10.1021/ja0646895
  11. Oh, Y.-H.; Ahn, D.-S.; Chung, S.-Y.; Jeon, J.-H.; Park, S.-W.; Oh, S. J.; Kim, D. W.; Kil, H. S.; Chi, D. Y.; Lee, S. J. Phys. Chem. A 2007, 111, 10152. https://doi.org/10.1021/jp0743929
  12. Lee, S.-S.; Kim, H.-S.; Hwang, T.-K.; Oh, Y.-H.; Park, S.-W.; Lee, S.; Lee, B. S.; Chi, D. Y. Org. Lett. 2008, 10, 61. https://doi.org/10.1021/ol702627m
  13. Lee, J.-W.; Yan, H.; Jang, H.-B.; Kim, H.-K.; Park, S.-W.; Lee, S.; Chi, D.-Y.; Song, C.-E. Angew. Chem. Int. Ed. 2009, 48, 7683. https://doi.org/10.1002/anie.200903903
  14. Im, S.; Jang, S.-W.; Kim, H.-R.; Oh, Y.-H.; Park, S.-W.; Lee, S.; Chi, D.-Y. J. Phys. Chem. A 2009, 113, 3685. https://doi.org/10.1021/jp900576x
  15. Pliego, J. R.; Pilo-Veloso, D. Phys. Chem. Chem. Phys. 2008, 10, 1118. https://doi.org/10.1039/b716159j
  16. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.
  18. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t

Cited by

  1. Ar reactions vol.99, pp.5, 2011, https://doi.org/10.1524/ract.2011.1820
  2. Aminolysis of 1-(1-Hydroxybenzotriazolyl)-2,4-dinitrobenzene and 2-(1-Hydroxybenzotriazolyl)-5-nitropyridine vol.02, pp.03, 2012, https://doi.org/10.4236/ojpc.2012.23021
  3. Very Efficient Nucleophilic Aromatic Fluorination Reaction in Molten Salts: A Mechanistic Study vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.881
  4. Mechanistic pathways of aromatic nucleophilic substitution in conventional solvents and ionic liquids vol.38, pp.6, 2014, https://doi.org/10.1039/C4NJ00130C
  5. A faux hawk fullerene with PCBM-like properties vol.6, pp.3, 2015, https://doi.org/10.1039/C4SC02970D
  6. Expanding the Palette of Phenanthridinium Cations vol.20, pp.13, 2014, https://doi.org/10.1002/chem.201304241
  7. Ar Reactions in Ionic Liquids vol.22, pp.37, 2016, https://doi.org/10.1002/chem.201602237
  8. How difficult are anion-molecule SNAr reactions of unactivated arenes in the gas phase, dimethyl sulfoxide, and methanol solvents? pp.1572-9001, 2018, https://doi.org/10.1007/s11224-018-1172-7
  9. Konzertierte nukleophile aromatische Substitutionen vol.131, pp.46, 2010, https://doi.org/10.1002/ange.201902216
  10. Concerted Nucleophilic Aromatic Substitution Reactions vol.58, pp.46, 2010, https://doi.org/10.1002/anie.201902216