DOI QR코드

DOI QR Code

Spectrofluorimetric Determination of Bisphosphonates in Biological Sample with a Fluorescent Chemosensor, NadDPA-2Zn2+

  • Jeong, Yun-Seong (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Kim, Soon-Young (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Jin, Geun-Woo (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • An, Song-Hie (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Lee, Jae-Han (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Jeong, A-Reum (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Chio, Yeon-Soon (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Hong, Jong-In (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Park, Jong-Sang (Department of Chemistry, College of Natural Science, Seoul National University)
  • Received : 2010.07.15
  • Accepted : 2010.07.26
  • Published : 2010.09.20

Abstract

The accurate determination of bisphosphonate levels in bone and biological fluids is important in both clinical and pharmacological/toxicological studies; however, the quantitative analysis of the bisphosphonate is difficult because its concentration is quite low in most of biological sample. A novel fluorescent chemosensor (FCS)-based measurement method of bisphosphaonate levels using Naphta-diDPA-$2Zn^{2+}$ (NadDPA-$2Zn^{2+}$, DPA = dipycolylamine), an excellent FCS previously used for detecting PPi, was developed. By the FCS method, the concentration of bisphosphonates having no fluorophores can be determined analyzed with sufficient sensitivity. The results of this study indicate that the FCS-based measurement can be a useful method to analyze bisphosphonates in biological samples.

Keywords

References

  1. Shaw, N. J.; Bishop, N. J. Arch. Dis. Child. 2005, 90, 494. https://doi.org/10.1136/adc.2003.036590
  2. Cremers, S. C. L. M.; van Hogezand, R.; Banffer, D.; Hartigh, J. d.; Vermeij, P.; Papapoulos, S. E.; Hamdy, N. A. T. Osteoporos Int. 2005, 16, 1727. https://doi.org/10.1007/s00198-005-1911-7
  3. Raoa, B. M.; Srinivasua, M. K.; Rania, Ch. P.; Kumara, S. S.; Kumarb, P. R.; Chandrasekharc, K. B.; Veerender, M. J. Pharm. Biomed. Anal. 2005, 39, 781. https://doi.org/10.1016/j.jpba.2005.04.012
  4. Tsai, E. W.; Chamberlin, S. D.; Forsyth, R. J.; Bell, C.; Ip, D. P.; Brooks, M. A. J. Pharm. Biomed. Anal. 1994, 12, 983. https://doi.org/10.1016/0731-7085(94)00047-6
  5. Quitasol, J.; Krastins, L. J. Chromatogr. A 1994, 671, 273. https://doi.org/10.1016/0021-9673(94)80250-5
  6. Jia, H.-J.; Li, W.; Zhao, K. Anal. Chim. Acta 2006, 562, 171. https://doi.org/10.1016/j.aca.2006.01.077
  7. De Marco, J. D.; Biffar, S. E.; Reed, D. G.; Brooks, M. A. J. Pharm. Biomed. Anal. 1989, 7, 1719. https://doi.org/10.1016/0731-7085(89)80186-4
  8. Kline, W. F.; Matuszewski, B. K. J. Chromatogr. 1992, 583, 183. https://doi.org/10.1016/0378-4347(92)80551-Z
  9. Wong, J. A.; Renton, K. W.; Crocker, J. F. S.; O'Regan, P. A.; Acott, P. D. Biomed. Chromatogr. 2004, 18, 98. https://doi.org/10.1002/bmc.298
  10. Saktyama, N.; Kataokab, H.; Makita, M. J. Chromatogr. A 1996, 724, 279. https://doi.org/10.1016/0021-9673(95)00950-7
  11. Ostovic, D.; Stelmach, C.; Hulshizer, B. Pharm. Res. 1993, 10(3), 470. https://doi.org/10.1023/A:1018969112754
  12. Kuljanin, J.; Jankovic, I.; Nedeljkovic, J.; Prstojevic, D.; Marinkovic, V. J. Pharm. Biomed. Anal. 2002, 28, 1215. https://doi.org/10.1016/S0731-7085(02)00021-3
  13. Zhu, L. S.; Lapko, V. N.; Leey, J. W.; Basir, Y. J.; Kafonek, C.; Olsen, R.; Briscoe, C. Rapid Commun. Mass Spectrom. 2006, 20, 3421. https://doi.org/10.1002/rcm.2755
  14. Bertinatto Rodriguez, J. A.; Desimone, M. F.; Iglesias, S. L.; Giogieri, S. A.; Diaz, L. E. J. Pharm. Biomed. Anal. 2007, 44, 305. https://doi.org/10.1016/j.jpba.2007.02.021
  15. Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc. Chem. Res. 2009, 42, 23. https://doi.org/10.1021/ar800003f
  16. Kim, S. K.; Seo, D.; Han, S. J.; Son, G.; Lee, I. J.; Lee, C.; Lee, K. D.; Yoon, J. Tetrahedron 2008, 64, 6402. https://doi.org/10.1016/j.tet.2008.04.085
  17. Lee, D. H.; Kim, s. Y.; Hong, J.-I. Tetrahedron Lett. 2007, 48, 4477. https://doi.org/10.1016/j.tetlet.2007.05.006
  18. Lee, D. H.; Kim, s. Y.; Hong, J.-I. Angew. Chem., Int. Ed. 2004, 43, 4881.
  19. Connors, K. A. Binding Constants-The Measurement of Molecular Complex Stability; Wiley press: New York, 1987; pp175-183.
  20. Ezra, A.; Hoffman, A.; Breuer, E.; Alferiev, I. S.; Monkkonen, J.; Hanany-Rozen, N. E.; Weiss, G.; Stepensky, D.; Gati, I.; Cohen, H.; Tormalehto, S.; Amidon, G. L.; Golomb, G. J. Med. Chem. 2000, 43, 3641. https://doi.org/10.1021/jm980645y
  21. Al Deeb, S. K.; Hamdan, I. I.; Al Najjar, S. M. Talanta 2004, 64, 690.

Cited by

  1. Anion recognition and sensing with Zn(ii)–dipicolylamine complexes vol.41, pp.14, 2012, https://doi.org/10.1039/c2cs35087d
  2. A Fluorescent Sensor and Gel Stain for Detection of Pyrophosphorylated Proteins vol.10, pp.9, 2015, https://doi.org/10.1021/acschembio.5b00256
  3. Spectrofluorimetric Determination of Alendronate by Conjugation with the Rhodamine B Sulfonyl Group vol.32, pp.5, 2010, https://doi.org/10.5012/bkcs.2011.32.5.1777
  4. Spectrofluorimetric Determination of Bisphosphonates with a Fluorescent Chemosensor, Zinpyr-1.2Zn2+ vol.32, pp.1, 2010, https://doi.org/10.5012/bkcs.2011.32.1.37
  5. A simple innovative spectrofluorometric method for the determination of alendronate in bulk and in pharmaceutical tablets vol.34, pp.3, 2010, https://doi.org/10.1002/bio.3622