DOI QR코드

DOI QR Code

Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties

  • Xu, Jie (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Wang, Lei (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Liang, Guijie (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Bai, Zikui (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Wang, Luoxin (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Xu, Weilin (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Shen, Xiaolin (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University)
  • Received : 2010.05.28
  • Accepted : 2010.07.16
  • Published : 2010.09.20

Abstract

Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been employed to investigate the molecular structures and absorption spectra of two dyes containing diphenylaniline and 4-diphenylamino-diphenylaniline as donor moiety (TPA1 and TPA3). The geometries indicate that the strong conjugation is formed in the dyes. The electronic structures suggest that the intramolecular charge transfer from the donor to the acceptor occurs, and the electron-donating capability of 4-diphenylamino-diphenylaniline is stronger than that of diphenylaniline. The computed highest occupied molecular orbital (HOMO) energy levels are -5.31 and -4.90 eV, while the lowest unoccupied molecular orbital (LUMO) energies are -2.29 and -2.26 eV for TPA1 and TPA3, respectively, revealing that the interfacial charge transfer between the dyes and the semiconductor electrode are electron injection processes from the photon-excited dyes to the semiconductor conduction band. Furthermore, all the experimental absorption bands of TPA1 and TPA3 have been assigned according to the TDDFT calculations.

Keywords

References

  1. O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K.; Kay, A.; Rodicio, R.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
  3. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613. https://doi.org/10.1021/ja003299u
  4. Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  5. Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2008, 130, 10720. https://doi.org/10.1021/ja801942j
  6. Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Gratzel, M. ACS Nano 2009, 3, 3103. https://doi.org/10.1021/nn900756s
  7. Amao, Y.; Komori, T. Biosensors Bioelectron. 2004, 19, 843. https://doi.org/10.1016/j.bios.2003.08.003
  8. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218. https://doi.org/10.1021/ja0488277
  9. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New J. Chem. 2003, 27, 783. https://doi.org/10.1039/b300694h
  10. Horiuchi, T.; Miura, H.; Uchida, S. Chem. Comm. 2003, 3036.
  11. Horiuchi, T.; Miura, H.; Uchida, S. J. Photochem. Photobiol. A: Chem. 2004, 164, 29. https://doi.org/10.1016/j.jphotochem.2003.12.018
  12. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S. Chem. Mater. 2004, 16, 1806. https://doi.org/10.1021/cm0349708
  13. Hagberg, D. P.; Yum, J.-H.; Lee, H.; Angelis, F. D.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Gratzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2008, 130, 6259. https://doi.org/10.1021/ja800066y
  14. Tian, H.; Yang, X.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. J. Phys. Chem. C 2008, 112, 11023. https://doi.org/10.1021/jp800953s
  15. Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Ed. 2009, 48, 2474. https://doi.org/10.1002/anie.200804709
  16. Barolo, C.; Nazeeruddin, M. K.; Fantacci, S.; Di Censo, D.; Comte, P.; Liska, P.; Viscardi, G.; Quagliotto, P.; De Angelis, F.; Ito, S.; Gratzel, M. Inorg. Chem. 2006, 45, 4642. https://doi.org/10.1021/ic051970w
  17. Onozawa-Komatsuzaki, N.; Kitao, O.; Yanagida, M.; Himeda, Y.; Sugihara, H.; Kasuga, K. New J. Chem. 2006, 30, 689. https://doi.org/10.1039/b511986c
  18. Monat, J. E.; Rodriguez, J. H.; McCusker, J. K. J. Phys. Chem. A 2002, 106, 7399. https://doi.org/10.1021/jp020927g
  19. Fantacci, S.; De Angelis, F.; Selloni, A. J. Am. Chem. Soc. 2003, 125, 4381. https://doi.org/10.1021/ja0207910
  20. Angelis, F. D.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K. Chem. Phys. Lett. 2005, 415, 115. https://doi.org/10.1016/j.cplett.2005.08.044
  21. Zhang, X.; Zhang, J.-J.; Xia, Y.-Y. J. Photochem. Photobiol. A: Chem. 2007, 185, 283. https://doi.org/10.1016/j.jphotochem.2006.06.022
  22. Xu, Y.; Chen, W.-K.; Cao, M.-J.; Liu, S.-H.; Li, J.-Q.; Philippopoulos, A. I.; Falaras, P. Chem. Phys. 2006, 330, 204. https://doi.org/10.1016/j.chemphys.2006.08.012
  23. Kurashige, Y.; Nakajima, T.; Kurashige, S.; Hirao, K.; Nishikitani, Y. J. Phys. Chem. A 2007, 111, 5544. https://doi.org/10.1021/jp0720688
  24. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597. https://doi.org/10.1021/jp026963x
  25. Zhang, X.; Zhang, J.-J.; Xia, Y.-Y. J. Photochem. Photobiol. A: Chem. 2008, 194, 167. https://doi.org/10.1016/j.jphotochem.2007.08.004
  26. Liu, Z. J. Mol. Struct. (Theochem) 2008, 862, 44. https://doi.org/10.1016/j.theochem.2008.04.022
  27. Xu, J.; Zhang, H.; Wang, L.; Liang, G.; Wang, L.; Shen, X.; Xu, W. Monatsh. Chem. 2010, 141, 549. https://doi.org/10.1007/s00706-010-0298-0
  28. Alexander, B. D.; Dines, T. J.; Longhurst, R. W. Chem. Phys. 2008, 352, 19. https://doi.org/10.1016/j.chemphys.2008.05.010
  29. Lee, C.; Sohlberg, K. Chem. Phys. 2010, 367, 7. https://doi.org/10.1016/j.chemphys.2009.10.005
  30. Ma, R.; Guo, P.; Cui, H.; Zhang, X.; Nazeeruddin, M. K.; Gratzel, M. J. Phys. Chem. A 2009, 113, 10119. https://doi.org/10.1021/jp905412y
  31. Gao, Y.; Sun, S.; Han, K. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2009, 71, 2016. https://doi.org/10.1016/j.saa.2008.07.044
  32. Xu, J.; Liang, G.; Wang, L.; Xu, W.; Cui, W.; Zhang, H.; Li, Z. J. Serb. Chem. Soc. 2010, 75, 259. https://doi.org/10.2298/JSC1002259X
  33. Ning, Z.; Tian, H. Chem. Comm. 2009, 5483.
  34. Erten-Ela, S.; Marszalek, M.; Tekoglu, S.; Can, M.; Icli, S. Curr. Appl. Phys. 2010, 10, 749. https://doi.org/10.1016/j.cap.2009.09.009
  35. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, Y.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, I. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian Inc.: Wallingford CT, 2004.
  36. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  37. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  38. Gorelsky, S. I. University of Ottawa: Ottawa, Canada, 2010
  39. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327. https://doi.org/10.1016/0009-2614(96)00349-1
  40. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. https://doi.org/10.1021/jp9716997
  41. Howie, W. H.; Claeyssens, F.; Miura, H.; Peter, L. M. J. Am. Chem. Soc. 2008, 130, 1367. https://doi.org/10.1021/ja076525+
  42. Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214. https://doi.org/10.1002/qua.21088
  43. Watson, D. F.; Meyer, G. J. Annu. Rev. Phys. Chem. 2005, 56, 119. https://doi.org/10.1146/annurev.physchem.56.092503.141142

Cited by

  1. The Role of the π Linker in Donor-π-Acceptor Organic Dyes for High-Performance Sensitized Solar Cells vol.12, pp.16, 2011, https://doi.org/10.1002/cphc.201100520
  2. QSPR Study of the Absorption Maxima of Azobenzene Dyes vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3865
  3. Substituent Effect on the π Linkers in Triphenylamine Dyes for Sensitized Solar Cells: A DFT/TDDFT Study vol.13, pp.14, 2012, https://doi.org/10.1002/cphc.201200273
  4. Extent of charge separation and exciton delocalization for electronically excited states in a triphenylamine-C60 donor–acceptor conjugate: a combined molecular dynamics and TD-DFT study vol.134, pp.2, 2015, https://doi.org/10.1007/s00214-015-1614-x
  5. The Driving Force of Photoinduced Charge Separation in Metal-Cluster-Encapsulated Triphenylamine-[80]fullerenes vol.22, pp.48, 2016, https://doi.org/10.1002/chem.201603504
  6. donor-acceptor conjugate vol.37, pp.15, 2016, https://doi.org/10.1002/jcc.24355
  7. Quantum Chemical Designing of Efficient TC4-Based Sensitizers by Modification of Auxiliary Donor and π-Spacer vol.86, pp.11, 2013, https://doi.org/10.1246/bcsj.20130146
  8. DFT/TD-DFT Studies on the Lawsone (Henna) as a Photosensitizer for Dye-Sensitized Solar Cells vol.789-790, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.789-790.56