DOI QR코드

DOI QR Code

Liquid-Phase Synthesis of Biaryl Compounds by the Hydrogenolysis of Pentaerythritol-Supported Biarylsulfonates

  • Kim, Chul-Bae (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Sung-Kyung (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Kwang-Yong (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Received : 2010.06.14
  • Accepted : 2010.07.02
  • Published : 2010.09.20

Abstract

Unfunctionalized biaryl compounds were parallelly and combinatorially prepared by the traceless hydrogenolysis of biarylsulfonates supported on pentaerythritol. The hydrogenolysis using 2-propylmagnesium chloride in the presence of $dppfNiCl_2$ efficiently generated corresponding biaryl derivatives without any memory of the support. The strategy using pentaerythritol as a small soluble support was disclosed to have a potential to combine the benefits of both SPOS and solution-phase reaction with fast reaction rate, facile isolation of intermediates, easy analysis of intermediates and atom economical manner. The novel tetrapodal support is expected to be an efficient substitute for polymeric supports in many circumstances.

Keywords

References

  1. Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2009, 48, 3224. https://doi.org/10.1002/anie.200803437
  2. Nandy, J. P.; Prakesch, M.; Khadem, S.; Reddy, P. T.; Sharma, U.; Arya, P. Chem. Rev. 2009, 109, 1999. https://doi.org/10.1021/cr800188v
  3. Jorgensen, W. L. Acc. Chem. Res. 2009, 42, 724. https://doi.org/10.1021/ar800236t
  4. Olano, C.; Méndez, C.; Salas, J. A. Nat. Prod. Rep. 2009, 26, 628. https://doi.org/10.1039/b822528a
  5. Scott, W. L.; O’Donell, M. J. J. Comb. Chem. 2009, 11, 3. https://doi.org/10.1021/cc800183m
  6. Dunlap, R. A.; Sibley, G. L.; Sy, F. N.; Hatchard, T. D. J. Alloys. Compd. 2009, 470, 27. https://doi.org/10.1016/j.jallcom.2008.02.066
  7. Ludwig, A.; Zotov, N.; Savan, A.; Groudeva-Zotova, S. Appl. Surf. Sci. 2006, 252, 2518. https://doi.org/10.1016/j.apsusc.2005.04.058
  8. Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M. Appl. Surf. Sci. 2004, 223, 62. https://doi.org/10.1016/S0169-4332(03)00898-5
  9. Müller, C. A.; Markert, C.; Teichert, A. M.; Pfaltz, A. Chem. Commun. 2009, 1607.
  10. Goudriaan, P. E.; van Leeuwen, P. W. N. M.; Birkholz, M.-N.; Reek, J. N. H. Eur. J. Inorg. Chem. 2008, 2939.
  11. Ding, K. Chem. Commun. 2008, 909.
  12. Breit, B. Angew. Chem., Int. Ed. 2005, 44, 6816. https://doi.org/10.1002/anie.200501798
  13. Potyrailo, R. A.; Mirsky, V. M. Chem. Rev. 2008, 108, 770. https://doi.org/10.1021/cr068127f
  14. Potyrailo, R. A. Angew. Chem., Int. Ed. 2006, 45, 702. https://doi.org/10.1002/anie.200500828
  15. Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S. J. Comb. Chem. 2004, 6, 325. https://doi.org/10.1021/cc034040l
  16. Lindell, S. D.; Pattenden, L. C.; Shannon, J. Bioorg. Med. Chem. 2009, 17, 4035. https://doi.org/10.1016/j.bmc.2009.03.027
  17. Scherkenbeck, J.; Lindell, S. Comb. Chem. High Throughput Screening 2005, 8, 563. https://doi.org/10.2174/138620705774575391
  18. Lindell, S. D.; Scherkenbeck, J. S. Comb. Chem. High Throughput Screening 2005, 8, 555. https://doi.org/10.2174/138620705774575319
  19. Ljosa, V.; Carpenter, A. E. Trends Biotechnol. 2008, 26, 527. https://doi.org/10.1016/j.tibtech.2008.06.008
  20. Sano, H.; Matsumoto, T.; Matsumoto, Y.; Koinuma, H. Appl. Surf. Sci. 2006, 252, 2493. https://doi.org/10.1016/j.apsusc.2005.05.091
  21. Finney, N. S. Curr. Opin. Chem. Biol. 2006, 10, 238. https://doi.org/10.1016/j.cbpa.2006.04.025
  22. Sohn, K. S.; Park, D. H.; Cho, S. H.; Kim, B. I.; Woo, S. I. J. Comb. Chem. 2006, 8, 44. https://doi.org/10.1021/cc050101z
  23. Park, J. K.; Choi, K. J.; Kim, K. N.; Kim, C. H. Appl. Phys. Lett. 2005, 87, 031108. https://doi.org/10.1063/1.1984103
  24. Gil, C.; Bräse, S. J. Comb. Chem. 2009, 11, 175. https://doi.org/10.1021/cc800102t
  25. Dolle, R. E.; Le Bourdonnec, B.; Goodman, A. J.; Molares, G. A.; Thomas, C. J.; Zhang, W. J. Comb. Chem. 2008, 10, 753. https://doi.org/10.1021/cc800119z
  26. Testero, S. A.; Mata, E. G. J. Comb. Chem. 2008, 10, 487. https://doi.org/10.1021/cc800020b
  27. Mentel, M.; Breinbauer, R. Eur. J. Org. Chem. 2007, 4283.
  28. Dolle, R. E.; Le Bourdonnec, B.; Molares, G. A.; Moriarty, K. J.; Salvino, J. M. J. Comb. Chem. 2006, 8, 597. https://doi.org/10.1021/cc060095m
  29. Toy, P. H.; Janda, K. D. Acc. Chem. Res. 2000, 33, 546. https://doi.org/10.1021/ar990140h
  30. Harwig, C. W.; Gravert, D. J.; Janda, K. D. Chemtracts 1999, 12, 1.
  31. Gravert, D. J.; Janda, K. D. Chem. Rev. 1997, 97, 489. https://doi.org/10.1021/cr960064l
  32. Yerneni, C. K.; Pathak, V.; Pathak, A. K. J. Org. Chem. 2009, 74, 6307. https://doi.org/10.1021/jo901169u
  33. Plaquevent, J.-C.; Levillain, J.; Guillen F.; Malhiac, C.; Gaumont, A.-C. Chem. Rev. 2008, 108, 5035. https://doi.org/10.1021/cr068218c
  34. Legeay, J. C.; Eynde, J. J. V.; Bazureau, J. P. Tetrahedron 2008, 64, 5328. https://doi.org/10.1016/j.tet.2008.03.021
  35. Pathak, A. K.; Yerneni, C. K.; Young, J.; Pathak, V. Org. Lett. 2008, 10, 145. https://doi.org/10.1021/ol702743x
  36. He, X.; Chan, T. H. Org. Lett. 2007, 9, 2681. https://doi.org/10.1021/ol0708875
  37. Legeay, J. C.; Eynde, J. J. V.; Bazureau, J. P. Tetrahedron Lett. 2007, 48, 1063. https://doi.org/10.1016/j.tetlet.2006.11.148
  38. Feng, Y.; He, Y.-M.; Zhao, L.-W.; Huang, Y.-Y.; Fan, Q.-H. Org. Lett. 2007, 9, 2261. https://doi.org/10.1021/ol0705393
  39. Haag, R.; Sunder, A.; Hebel, A.; Roller, S. J. Comb. Chem. 2002, 4, 112. https://doi.org/10.1021/cc010058p
  40. Zhang, J.; Aszodi, J.; Chartier, C.; L’hermite, N.; Weston, J. Tetrahedron Lett. 2001, 42, 6683. https://doi.org/10.1016/S0040-4039(01)01367-3
  41. Hovestad, N. J.; Ford, A.; Jastrzebski, J. T. B. H.; van Koten, G. J. Org. Chem. 2000, 65, 6338. https://doi.org/10.1021/jo991726k
  42. Thiem, J.; Steinmann, A.; Thimm, J.; Wollik, N. Curr. Org. Chem. 2008, 12, 1010. https://doi.org/10.2174/138527208785161213
  43. Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046. https://doi.org/10.1038/nature05819
  44. Trump, R. P.; Barlett, P. A. J. Comb. Chem. 2003, 5, 285. https://doi.org/10.1021/cc020081q
  45. Pryor, K. E.; Shipps, W., Jr.; Skyler, D. A.; Rebek, J., Jr. Tetrahedron 1998, 54, 4107. https://doi.org/10.1016/S0040-4020(98)00139-2
  46. Carell, T.; Wintner, E. A.; Sutherland, A. J.; Rebek, J., Jr.; Dunayevskiy, Y. M.; Vouros, P. Chem. Biol. 1995, 2, 171. https://doi.org/10.1016/1074-5521(95)90072-1
  47. Kim, C.-B.; Cho, C.-H.; Kim, C. K.; Park, K. J. Comb. Chem. 2007, 9, 1157. https://doi.org/10.1021/cc700112x
  48. Scott, P. J. H.; Steel, P. G. Eur. J. Org. Chem. 2006, 2251.
  49. Gil, C.; Brase, S. J. Curr. Opin. Chem. Biol. 2004, 8. 230. https://doi.org/10.1016/j.cbpa.2004.04.004
  50. Phoon, C. W.; Sim, M. M. Curr. Org. Chem. 2002, 6, 937. https://doi.org/10.2174/1385272023373734
  51. Brase, S.; Dahmen, S. Chem. Eur. J. 2000, 6, 1899. https://doi.org/10.1002/1521-3765(20000602)6:11<1899::AID-CHEM1899>3.0.CO;2-M
  52. Davies, D. R.; Mamat, B.; Magnusson, O. T.; Christensen, J.; Haraldsson, M. H.; Mishra, R.; Pease, B.; Hansen, E.; Singh, J.; Zembower, D.; Kim, H.; Kiselyov, A. S.; Burgin, A. B.; Gurney, M. E.; Stewart, L. J. J. Med. Chem. 2009, 52, 4694. https://doi.org/10.1021/jm900259h
  53. Delomenède, M.; Bedos-Belval, F.; Duran, H.; Vindis, C.; Baltas, M.; Nègre-Salvayre, A. J. Med. Chem. 2008, 51, 3171. https://doi.org/10.1021/jm7014793
  54. Greemfield, A.; Grosanu, C.; Dunlop, J.; McIlvain, B.; Carrick, T.; Jow, B.; Lu, Q.; Kowal, D.; Williams, J.; Butera, J. Bioorg. Med. Chem. Lett. 2005, 15, 4985. https://doi.org/10.1016/j.bmcl.2005.08.003
  55. Feliu, L.; Planas, M. Int. J. Pept. Res. Ther. 2005, 11, 53. https://doi.org/10.1007/s10989-004-1723-1
  56. Robichaud, J.: Oballa, R.; Prasit, P.; Falgueyret, J.-P.; Percival, M. D.; Wesolowski, G.; Rodan, S. B.; Kimmel, D.; Johnson, C.; Bryant, C.; Venkatraman, S.; Setti, E.; Mendonca, R.; Palmer, J. T. J. Med. Chem. 2003, 46, 3709. https://doi.org/10.1021/jm0301078
  57. Kawamoto, M.; Aoki, T.; Shiga, N.; Wada, T. Chem. Mater. 2009, 21, 564. https://doi.org/10.1021/cm8029032
  58. Mori, T.; Kyotani, M.; Akagi, K. Macromolecules 2008, 41, 607. https://doi.org/10.1021/ma702470t
  59. Li, Q.; Green, L.; Venkataraman, N.; Shiyanovskaya, I.; Khan, A.; Urbas, A.; Doane, J. W. J. Am. Chem. Soc. 2007, 129, 12908. https://doi.org/10.1021/ja0747573
  60. Yoshizawa, A.; Kobayashi, K.; Sato, M. Chem. Commun. 2007, 257.
  61. Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661. https://doi.org/10.1126/science.1178239
  62. Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. https://doi.org/10.1021/ar800036s
  63. Shimizu, H.; Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405. https://doi.org/10.1016/j.tet.2005.03.022
  64. Spivey, A. C.; Fekner, T.; Spey, S. E. J. Org. Chem. 2000, 65, 3154. https://doi.org/10.1021/jo0000574
  65. Ozeki, M.; Hashimoto, D.; Nishide, K.; Kajimoto, T.; Node, M. Tetrahedron: Asymmetry 2005, 16, 1663. https://doi.org/10.1016/j.tetasy.2005.03.017
  66. Node, M.; Nishide, K.; Shigeta, Y.; Obata, K.; Shiraki, H.; Kunishige, H. Tetrahedron 1997, 53, 12883. https://doi.org/10.1016/S0040-4020(97)00804-1
  67. Hauptmann, H.; Walter, W. F. Chem. Rev. 1962, 62, 347.
  68. Miller, M.; Vogel, J. C.; Tsang, W.; Merrit, A.; Procter, D. Org. Biomol. Chem. 2009, 7, 589. https://doi.org/10.1039/b816608k
  69. Chang, Y.-F.; Liu, C.-Y.; Guo, C.-W.; Wang, Y.-C.; Fang, J.-M.; Cheng, W. C. J. Org. Chem. 2008, 73, 7197. https://doi.org/10.1021/jo8010182
  70. James, K. M.; Willetts, N.; Procter, D. J. Org. Lett. 2008, 10, 1203. https://doi.org/10.1021/ol800070y
  71. Xie, J.; Sun, J.; Zhang, G.; Houghten, R. A.; Yu, Y. J. J. Comb. Chem. 2007, 9, 566. https://doi.org/10.1021/cc070010x
  72. McAllister, L. A.; Turner, K. L.; Brand, S.; Stefaniak, M.; Procter, D. J. J. Org. Chem. 2006, 71, 6497. https://doi.org/10.1021/jo060940n
  73. Turner, K. L.; Baker, T. M.; Islam, S.; Procter, D. J.; Stefaniak, M. Org. Lett. 2006, 8, 329. https://doi.org/10.1021/ol052730n
  74. Kim, C.-B.; Cho, C.-H.; Park, K. Bull. Korean Chem. Soc. 2007, 28, 281. https://doi.org/10.5012/bkcs.2007.28.2.281
  75. Kim, C.-B.; Cho, C.-H.; Park, K. Bull. Korean Chem. Soc. 2007, 28, 281. https://doi.org/10.5012/bkcs.2007.28.2.281
  76. Cho, C.-H.; Yun, H.-S.; Park, K. J. Org. Chem. 2003, 68, 3017. https://doi.org/10.1021/jo026449n
  77. Cho, S.-D.; Kim, H.-K.; Yim, H.; Kim, M.-R.; Lee, J.-K.; Kim, J.-J.; Yoon, Y.-J. Tetrahedron 2007, 63, 1345. https://doi.org/10.1016/j.tet.2006.12.001
  78. Ackermann, L.; Gschrei, C. J.; Althammer, A.; Riederer, M. Chem. Commun. 2006, 1419.
  79. Worm-Leonhard, K.; Meldal, M. Eur. J. Org. Chem. 2008, 5244.

Cited by

  1. ChemInform Abstract: Liquid-Phase Synthesis of Biaryl Compounds by the Hydrogenolysis of Pentaerythritol-Supported Biarylsulfonates. vol.42, pp.8, 2011, https://doi.org/10.1002/chin.201108094
  2. Parallel and Combinatorial Liquid-Phase Synthesis of Alkylbiphenyls Using Pentaerythritol Support vol.16, pp.5, 2014, https://doi.org/10.1021/co400136k
  3. Combinatorial Chemistry Online : Volume 13, Issue 2, February 2011 vol.13, pp.2, 2010, https://doi.org/10.1016/j.comche.2010.12.002
  4. Preparation and Characterization of (E)- and (Z)-2-(Biphenyl-4-yl)-1-(4-bromophenyl)-1-phenylethene Isomers vol.35, pp.6, 2014, https://doi.org/10.5012/bkcs.2014.35.6.1871