DOI QR코드

DOI QR Code

Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

  • Cho, Dae-Won (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Oh, Sun-Wha (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Dong-Uk (Department of Science Education, Daegu National University of Education) ;
  • Park, Hea-Jung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Xue, Jin-Ying (College of Chemistry and Chemical Engineering, Harbin Normal University) ;
  • Yoon, Ung-Chan (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Mariano, Patrick S. (Department of Chemistry and Chemical Biology, University of New Mexico)
  • Received : 2010.06.14
  • Accepted : 2010.07.01
  • Published : 2010.09.20

Abstract

Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and $\gamma$-hydrogen abstraction pathways.

Keywords

References

  1. Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2001, 34(7), 523. https://doi.org/10.1021/ar010004o
  2. Yoon, U. C.; Jin, Y. X.; Oh, S. W.; Park, C. H.; Park, J. H.; Campana, C. F.; Cai, X.; Duesler, E. N.; Mariano, P. S. J. Am. Chem. Soc. 2003, 125, 10664. https://doi.org/10.1021/ja030297b
  3. Yoon, U. C.; Oh, S. W.; Lee, C. W. Heterocycles 1995, 41(2), 2665. https://doi.org/10.3987/COM-95-7029
  4. Yoon, U. C.; Kwon, H. C.; Hyung, T. G.; Choi, K. H.; Oh, S. W.; Yang, S.; Zhao, Z.; Mariano, P. S. J. Am. Chem. Soc. 2004, 126, 1110. https://doi.org/10.1021/ja0305712
  5. Oh, S. W., Kim, J. Y.; Cho, D. W.; Choi, J. H.; Yoon, U. C. Bull. Korean Chem. Soc. 2007, 28(9), 629. https://doi.org/10.5012/bkcs.2007.28.4.629
  6. Cho, D. W.; Lee, H.-Y.; Oh, S. W.; Choi, J. H.; Park, H. J.; Mariano, P. S.; Yoon, U. C. J. Org. Chem. 2008, 73(12), 4539. https://doi.org/10.1021/jo800473x
  7. Kanaoka, Y.; Koyama, K. Tetrahedron Lett. 1972, 4517.
  8. Coyle, J. D. Chem. Rev. 1978, 78, 97. https://doi.org/10.1021/cr60312a002
  9. Kanaoka, Y.; Yoshida, K.; Hatanaka, Y. J. Org. Chem. 1979, 44, 664. https://doi.org/10.1021/jo01318a053
  10. Kanaoka, Y. Acc. Chem. Res. 1978, 11, 407. https://doi.org/10.1021/ar50131a002
  11. Kanaoka, Y.; Koyama, K.; Flippen, J. L.; Karle, I. L.; Witkoo, B. J. Am. Chem. Soc. 1974, 96, 4719. https://doi.org/10.1021/ja00821a084
  12. Coyle, J. D.; Haniman, A,; Newport, G. L. J. Chem. Soc., Perkin Trans. 2 1979, 799.
  13. Oelgemoller, M.; Griesbeck, A. G. J. Photochem. Photobiol. C: Photochem. Rev. 2002, 3, 109. https://doi.org/10.1016/S1389-5567(02)00022-9
  14. Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R.; Todd, W. R.; Mattes, S. L. J. Am. Chem. Soc. 1989, 111, 8973. https://doi.org/10.1021/ja00206a061
  15. Yoon, U. C.; Mariano, P. S. Bull. Korean Chem. Soc. 2006, 27, 1099. https://doi.org/10.5012/bkcs.2006.27.8.1099
  16. Yoon, U. C.; Oh, S. W.; Lee, S. M.; Cho, S. J.; Gamlin, J.; Mariano, P. S. J. Org. Chem. 1999, 64, 4411 https://doi.org/10.1021/jo990087a
  17. Sung, N. K.; Cho, D. W.; Choi, J. H.; Choi, K, W.; Yoon, U. C.; Maeda, H.; Mariano, P. S. J. Org. Chem. 2007, 72, 8831. https://doi.org/10.1021/jo701770x
  18. Cho, D. W.; Choi, J. H.; Oh, S. W.; Quan, C.; Yoon, U. C.; Wang, R.; Yang, S.; Mariano, P. S. J. Am. Chem. Soc. 2008, 130 (7), 2276. https://doi.org/10.1021/ja076846l
  19. Cho, D. W.; Quan, C.; Park, H. J.; Choi, J. H.; Kim, S. R.; Hyung, T. G.; Yoon, U. C.; Kim, S. H.; Jin, Y. X.; Mariano, P. S. Tetrahedron 2010, 66, 3173. https://doi.org/10.1016/j.tet.2010.02.074
  20. Maeda, H.; Tierney, D. L.; Mariano, P. S.; Banerjee, M.; Cho, D. W.; Yoon, U. C. Tetrahedron 2008, 64(22), 5268. https://doi.org/10.1016/j.tet.2008.03.031
  21. Yoon, U. C.; Oh, J. H.; Lee, S. J.; Kim, D. U.; Lee, J. G.; Kang, K.-T.; Mariano, P. S. Bull. Korean Chem. Soc. 1992, 13(2), 166.
  22. Yoon, U. C.; Kim, D. U.; Lee, C. W.; Choi, Y. S.; Lee, Y.-J.; Ammon, H. L.; Mariano, P. S. J. Am. Chem. Soc. 1995, 177, 2698.
  23. Yoon, U. C.; Cho, S. J.; Lee, Y. -J.; Mancheno, M. J.; Mariano, P. S. J. Org. Chem. 1995, 60, 2353. https://doi.org/10.1021/jo00113a012
  24. Lee, Y. J.; Ling, R.; Mariano, P. S.; Yoon, U. C.; Kim, D. U.; Oh, S. W. J. Org. Chem. 1996, 61, 3304. https://doi.org/10.1021/jo9522623
  25. Yoon, U. C.; Kim, J. W.; Ryu, J. Y.; Cho, S. J.; Oh, S. W.; Mariano, P. S. J. Photochem. Photobiol. A: Chem. 1997, 106, 145. https://doi.org/10.1016/S1010-6030(97)00052-X
  26. Yoon, U. C.; Lee, C. W.; Oh, S. W.; Mariano, P. S. Tetrahedron 1999, 55, 11997. https://doi.org/10.1016/S0040-4020(99)00702-4
  27. Kamigata, N.; Saegusa, T.; Fujie, S.; Kobayashi, M. Chem. Lett. 1997, 1, 9.
  28. Ono, I.; Sato, S.; Fukuda, K.; Inayoshi, T. Bull. Chem. Soc. Jpn. 1997, 70, 2051 https://doi.org/10.1246/bcsj.70.2051
  29. Yoon, U. C.; Koh, Y. S.; Kim, H. J.; Jung, D. Y.; Kim, D. U.; Cho, S. J.; Lee, S. J. Bull. Korean Chem. Soc. 1994, 15(9), 743.
  30. Cooper, B. E.; Owen, W. J. J. Organomet. Chem. 1971, 29, 33. https://doi.org/10.1016/S0022-328X(00)87488-4
  31. Cowan, D. O.; Drisko, R. L. Elements of Organic Photochemistry; Plenum Press: New York, USA 1976; Chapter 5, pp 205-266.

Cited by

  1. ChemInform Abstract: Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins. vol.42, pp.7, 2011, https://doi.org/10.1002/chin.201107162
  2. Photoisomerization of Saccharin vol.78, pp.7, 2013, https://doi.org/10.1021/jo400191p
  3. Structure and Photochemistry of a Saccharyl Thiotetrazole vol.80, pp.1, 2015, https://doi.org/10.1021/jo502419u
  4. -(Thioalkyl)-saccharins as an Alternative Route to the Synthesis of Tricyclic Sultams vol.82, pp.1, 2017, https://doi.org/10.1021/acs.joc.6b02171
  5. Update on the Reactivity of Saccharin: An Excellent Precursor for the Synthesis of Biologically Important Molecules vol.94, pp.8, 2017, https://doi.org/10.3987/REV-17-862
  6. Synthesis of (E)-N-Substituted 1,2-Benzothiazol-3(2H)-imine 1,1-Dioxide Derivatives from Secondary Benzenesulfonamides and Isothiocyanates vol.96, pp.7, 2018, https://doi.org/10.3987/COM-18-13923
  7. Structure and photochemistry of a novel tetrazole-saccharyl conjugate isolated in solid argon vol.1025, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2012.04.081
  8. Regioselective Photocycloaddition of Saccharin Anion to π-Systems: Continuous-Flow Synthesis of Benzosultams vol.84, pp.7, 2019, https://doi.org/10.1021/acs.joc.8b02984
  9. Advances in the Synthesis of Methylated Products through Indirect Approaches vol.362, pp.5, 2010, https://doi.org/10.1002/adsc.201901240