Multi-Functional 3,4-Dihydroquinazoline Derivative as T-Type Calcium Channel Blocker: Pharmacokinetics and Anti-Tremor Activity

So Hyung Lee, Soo Yeon Jung, Hang Ah Park, Han Byul Kang, Jungahn Kim, Dong Joon Choo, Adrian Handforth,[†] and Jae Yeol Lee^{*}

Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 130-701, Korea. *E-mail: ljy@khu.ac.kr *Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA Received May 25, 2010, Accepted June 30, 2010

Key Words: 3,4-Dihydroquinazoline, T-type calcium channel blocker, Pharmacokinetic parameters, Antitremor activity

The pharmacology of T-type calcium channels is in complex because many drugs have been found to block T-type currents.¹⁻³ Unfortunately, none of these compounds has high selectivity for these channels. Mibefradil has been marketed worldwide for the treatment of hypertension and angina for a short period before it was withdrawn due to its pharmacokinetic and pharmacodynamic interactions with some other drugs such as terfenadine, astemizole, cisapride, cyclosporine, tricyclic antidepressants.⁴ Mibefradil binds to skeletal muscle L-type calcium channels and brain voltage-gated sodium channels with dissociation constants of 2.3 and 17 nM, respectively.⁵ It also can block potassium and chloride channels.⁶ Obviously, this makes it not an ideal tool for in vitro or in vivo studies on T-type channels. Therefore, more potent and selective blockers are required to study the fundamental function of T-type channel and the related pathophysiological diseases such as epilepsy, neuronal pain, hypertension, congestive heart failure, and cancer.⁷⁻⁸ Recently, our group have reported the identification of 3,4-dihydroquinazoline derivatives as a novel scaffold, which are potent and selective T-type calcium blockers.9-10 These compounds also exhibited the anti-cancer activity in vitro via cellcycle arrest mechanism.11-12

As a continuous work, three compounds (1-3) with the highest T-channel channel selectivity (No blocking against N-type

Figure 1. Selected 3,4-dihydroquinazoline derivatives.

Table 1. Channel selectivity data of 3,4-dihydroquinazoline compounds

channel) were selected among the chemical library of 3,4-dihydroquinazoline and evaluated for the blocking effect on the hERG potassium channel,¹³⁻¹⁴ which is known for its contribution to the electrical activity of the heart that coordinates the heart's beating: both of % inhibitions at 10 µM concentration and the molar concentrations of compounds needed to produce 50% inhibition of peak currents (IC₅₀) were measured by the whole-cell patch-clamp method.¹⁵ The data were summarized in Table 1 with mibefradil as a positive control for comparison. Based on the IC₅₀ data in Table 1, 1-3 compounds exhibited low selectivity over hERG channel (T-type/hERG ratio = 3.43, 4.39 and 7.56, respectively) but higher than mibefradil (1.04). This result means that these compounds can distinguish N-type from T-type calcium channel perfectly but not hERG potassium channel effectively. Furthermore, the pharmacokinetic parameters of all compounds were evaluated after single oral dose (20 mg/kg) in the rat and summarized in Table 2. These data demonstrate that compounds 1 and 3 exhibit higher volume of distribution but faster plasma clearance than compound 2. It is inferred that compound 2 has both proper absorption in gastrointestinal system (C_{max} and AUC) and metabolic stability ($t_{1/2}$ = 1.6 h) based on these parameters. In addition, we found the 22% oral bioavailability of compound 2 particularly gratifying when compared with the poor oral bioavailability of another two compounds.

Of the three T-type calcium channels, the Ca_v3.1 (α_{1G}) and Ca_v3.3 (α_{1I}) subtypes are primarily expressed in the brain, while Ca_v3.2 (α_{1H}) has a broader central and peripheral expression.¹⁶⁻¹⁸ In addition, T-type channels are highly expressed in the thalamus and cortex and play important roles in thalamocortical signaling.¹⁹ Recent reports from some laboratories have disclosed

Compound -	Patch-Clamp Assay (%inhibition at 10 µM)			Patch-Clamp Assay (IC ₅₀ : µM) ^a		Datia IC (hEBC)/IC (T trma)
	T-type $(\alpha_{1G})^b$	N-type $(\alpha_{1B})^b$	hERG ^c	T-type $(\alpha_{1G})^b$	hERG ^c	- Katio IC ₅₀ (IIEKO)/IC ₅₀ (I-type
1	82.5 ± 0.7	No blocking	83.0 ± 2.6	0.56 ± 0.10	1.92 ± 0.44	3.43
2	91.3 ± 0.6	No blocking	70.3 ± 2.6	0.96 ± 0.22	4.21 ± 0.60	4.39
3	62.7 ± 2.3	No blocking	23.8 ± 1.4	4.10 ± 1.08	31.0 ± 3.35	7.56
Mibefradil	95.9 ± 1.7	67.6 ± 1.2	-	1.34 ± 0.49	1.40 ± 0.29	1.04

^aValue was determined from dose-response curve and obtained from three independent experiments; ^bexpressed in HEK293 cell; ^chuman cardiac potassium channel.

Compound	Vd/F (L/kg)	T_{max} (min)	C _{max} (ng/mL)	$t_{1/2}$ (min)	Cl/F (mL/min [/] kg)	MRT (min)	AUC (ng·hr/mL)
1	502.4 ± 225.0	10 ± 0.0	60.2 ± 9.2	164.5 ± 111.0	2740.4 ± 1398.0	135.8 ± 52.3	114.43 ± 29.6
2	129.4 ± 15.6	120 ± 0.0	105.0 ± 12.3	97.6 ± 10.4	923.6 ± 134.3	183.3 ± 5.3	348.0 ± 48.4
3	483.3 ± 189.5	120 ± 0.0	34.4 ± 5.9	75.4 ± 4.3	4500.6 ± 2000.5	169.2 ± 11.6	79.3 ± 35.2
-		L					

Table 2. Pharmacokinetic parameters of 3,4-dihydroquinazoline compounds^{*a,b,c*}

^aAfter single oral injection (20 mg/kg);^bbioavailability (F%): 3% for 1; 22% for 2; 4% for 3;^c the parameters were calculated using WinNonlin (Ver. 1.1) program.

Table 3. Suppression effect of compound 2 on two tremor mouse models^a

Compound	harmaline-induced tremor mode	el [post ip injection (10 mg/kg)]	genetic tremor model ^b [30 min post ip injection]		
Compound	20 - 40 min	40 - 60 min	10 mg/kg	20 mg/kg	
2	44.7%	55.3%	58.0%	82.2%	

^aP values less than 0.05 were considered significant; ^bGABA_A receptor α 1 subunit-null mouse model.

that selective T-type calcium channel blockers show in vivo efficacy in epilepsy and tremor models.²⁰⁻²¹ Based on these reports, therefore, our 3,4-dihydroquinazoline compound, in particular compound 2 which has both proper selective/potent T-type channel blocking effect and pharmacokinetic profile, was evaluated for the anti-tremor activity using two mouse model: harmaline-induced tremor mouse model²² and GABA_A receptor al subunit-null mouse model.²³ It has been well known that harmaline, a fluorescent psychoactive indole alkaloid from the group of harmala alkaloids, induces tremor in animals.²⁴ Thus, harmaline in saline (20 mg/kg) was injected subcutaneously in order to induce tremor in male ICR mouse. After 15 min when tremor had fully developed, compound 2 in 10% DMSO/saline solution was injected intraperitoneally. Then, the tremor-related motion data was obtained for five successive 20-min epochs and summarized in Table 3. As a result, compound 2 suppressed harmaline-induced tremor by 44.7% and 53.3% at 20 - 40 and 40 - 60 min after injection respectively.

In the case of GABA_A receptor α 1 subunit-null mouse model which exhibits postural and kinetic tremor and motor incoordination that is characteristic of essential tremor disease, the tremor-related motion data was obtained four times at a specified time after compound treatment and summarized in Table 3. As a result, compound **2** suppressed tremor by 58.0% at 10 mg/kg dose and by 82.2% at 20 mg/kg dose, respectively, 30 min post injection. This result suggests that 3,4-dihydroquinazoline compound would be developed as potential therapeutics for the tremor.

In summary, 3,4-dihydroquinazoline derivative (**2**) with proper T-type channel selectivity/activity and oral pharmacokinetic profile was evaluated for anti-tremor activity. This compound suppressed tremor in two tremor animal models effectively. This suggests that 3,4-dihydroquinazoline compound has considerable potential as an anti-tremor agent together with the previously reported anti-cancer agent.¹¹⁻¹²

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0088135).

References

1. Heady, T. N.; Gomora, J. C.; Macdonald, T. L.; Perez-Reyes, E.

Jpn. J. Pharmacol. 2001, 85, 339.

- 2. Perez-Reyes, E. Physiol. Rev. 2003, 83, 117.
- 3. McGivern, J. G. CNS Neurol. Disord. Drug. Targets 2006, 5, 587.
- Krayenbühl, J. C.; Vozeh, S.; Kondo-Oestreicher, M.; Dayer, P. Eur. J. Clin. Pharmacol. 1999, 55, 559.
- Eller, P.; Berjukov, S.; Wanner, S.; Huber, I.; Hering, S.; Knaus, H. G.; Toth, G.; Kimball, S. D.; Striessnig, J. *Br. J. Pharmacol.* 2000, *130*, 669.
- Nilius, B.; Prenen, J.; Kamouchi, M.; Viana, F.; Voets, T.; Droogmans, G. Br. J. Pharmacol. 1997, 121, 547.
- 7. Ertel, S. I.; Ertel, E. A.; Clozel, J. P. Cardiovasc. Drugs Ther. 1997, 11, 723.
- Nelson, M. T.; Todorovic, S. M.; Perez-Reyes, E. Curr. Pharm. Des. 2006, 12, 2189.
- Lee, Y. S.; Lee, B. H.; Park, S. J.; Kang, S. B.; Rhim, H.; Park, J. Y.; Lee, J. H.; Jeong, S. W.; Lee, J. Y. *Bioorg. Med. Chem. Lett.* 2004, 14, 3379.
- Seo, H. N.; Choi, J. Y.; Choe, Y. J.; Kim. Y.; Rhim, H.; Lee, S. H.; Kim, J.; Choo, D. J.; Lee, J. Y. *Bioorg. Med. Chem. Lett.* 2007, *17*, 5740.
- Lee, J. Y.; Park, S. J.; Park, S. J.; Lee, M. J.; Rhim, H.; Seo, S. H.; Kim, K. S. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5014.
- Heo, J. H.; Seo, H. N.; Choe, Y. J.; Kim, S.; Oh, C. R.; Kim, Y. D.; Rhim, H.; Choo, D. J.; Kim, J.; Lee, J. Y. *Bioorg. Med. Chem. Lett.* 2008, 18, 3899.
- 13. Sanguinetti, M. C.; Tristani-Firouzi, M. Nature 2006, 440, 463.
- 14. Finalyson, K.; Witchel, H. J.; McCulloch, J.; Sharkey, J. *Eur. J. Pharmacol.* **2004**, *500*, 129.
- Lee, J.-H.; Gomora, J. C.; Cribbs, L. L.; Perez-Reyes, E. *Biophys.* J. 1999, 77, 3034.
- 16. Nilius, B.; Talavera, K.; Verkhratsky, A. Cell Calcium 2006, 40, 81.
- Perez-Reyes, E.; Lory, P. CNS Neurol. Disord. Drug Targets 2006, 5, 605.
- 18. Talavera, K.; Nilius, B. Cell Calcium 2006, 40, 97.
- Lambert, R. C.; Bessaih, T.; Leresche, N. CNS Neurol. Disord. Drug Targets 2006, 5, 611.
- 20. Lory, P.; Chemin, J. Expert Opin. Ther. Targets 2007, 11, 717.
- Yang, Z. Q.; Barrow, J. C.; Shipe, W. D.; Schlegel, K. A.; Shu, Y.; Yang, F. V.; Lindsley, C. W.; Rittle, K. E.; Bock, M. G.; Hartman, G. D.; Uebele, V. N.; Nuss, C. E.; Fox, S. V.; Kraus, R. L.; Doran, S. M.; Connolly, T. M.; Tang, C.; Ballard, J. E.; Kuo, Y.; Adarayan, E. D.; Prueksaritanont, T.; Zrada, M. M.; Marino, M. J.; Graufelds, V. K.; DiLella, A. G.; Reynolds, I. J.; Vargas, H. M.; Bunting, P. B.; Woltmann, R. F.; Magee, M. M.; Koblan, K. S.; Renger, J. J. J. Med. Chem. 2008, 51, 6471 and references herein.
- 22. Martin, F. C.; Thu Le, A.; Handforth, A. Mov. Disord. 2005, 20, 298.
- Kralic, J. E.; Criswell, H. E.; Osterman, J. L.; O'Buckley, T. K.; Wilkie, M. E.; Matthews, D. B.; Hamre, K.; Breese, G. R.; Homanics, G. E.; Morrow, A. L. J. Clin. Invest. 2005, 115, 774.
- Bernard, J. F.; BuisseretDelmas, C.; Compoint, C.; Laplante, S. Brain Res. 1984, 57, 128.