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Figure 1. (a): The 1H NMR spectrum of DMSO-d6 solution of 1 only. 
(b)-(d): The 1H NMR spectra of DMSO-d6 solution of 1 + [Me4N] 
[MAM-H] in 10 min, 1.5 h and 10 h. All the peak assignments in (d) 
are for the imines of 1-D-Ala and 1-L-Ala, and the peak assignment 
in (b) and (c) is for free [Me4N][MAM-H].

Aminomalonic acid (AM-H2) is a biological intermediate 
appearing in the conversion course of serine to glycine.1 Amino-
malonic decarboxylases, enzymes that catalyze decarboxylation 
of aminomalonic acid, have been found in many living sys-
tems.2,3 Serine hydroxymethyltransferase stereospecifically 
decarboxylates 2-amino-2-methyl-malonic acid (MAM-H2) to 
produce D-alanine.4 Although stereoselective decarboxylation 
is a century old theme,5 the interest on it is growing recently 
owing to the development of chiral technology.6 Chemical app-
roaches using metal complexes and cinchonine derivatives have 
been developed for stereospecific decarboxylation of MAM.7

Rate constant for the spontaneous decarboxylation of amino-
malonate at pH 2-3 and 25 oC was reported to be 1.1 × 10‒6 s‒1, 
which corresponds to half-life (t1/2) of 175 h.7 In the presence 
of 1.0 M acetone, the rate is enhanced to ~100-fold.8 Moreover, 
Thanassi reported a rate constant of ~4 × 10‒3 s‒1 for the 5-deoxy-
pyridoxal catalyzed decarboxylation of MAM at pH 5.9 The 
rate enhancement in both cases are due to the imine formation. 
These studies encouraged us to employ (S)-2-hydroxy-2'-(3- 
phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) as 
a stereoselective chemical decarboxylase. Compound 1 was 
initially designed for stereoselective recognition of amino acids 
and amino alcohols by imine formation.10 We report here the 
decarboxylation of MAM catalyzed by 1.
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Compound 1 and neutral zwitterionic form of 2-amino-2- 
methyl-malonic acid (MAM-H2) were synthesized according 
to the described methods.10,11

The spontaneous decarboxylation of MAM-H2 in DMSO-d6 
has been studied and compared with those of [Me4N][MAM-H] 
and [Me4N]2[MAM]. The latter solutions were prepared by 
the addition of one and two equiv 1.0 M aqueous Me4NOH, 
respectively, to the solution of MAM-H2 in DMSO-d6. The final 
concentration of MAM was adjusted to be 20 mM, and the water 
content to be 10%. The decarboxylation rates were determined 
by measuring the alanine methyl peaks in the 1H NMR spectra 
of the solutions. The decarboxylation rate constant for the 
monoanionic form, [MAM-H]‒, was determined to be (2.3 ± 

0.2) × 10‒7 s‒1 (t1/2 = 837 h), whereas the one for MAM-H2 to 
be (7.3 ± 0.2) × 10‒6 s‒1 (t1/2 = 26 h) and the one for [MAM]2‒ to 
be (3.0 ± 0.6) × 10‒6 s‒1 (t1/2 = 64 h) (Supporting Information).

The decarboxylations of MAM-H2, [MAM-H]‒ and [MAM]2‒ 
in the presence of compound 1 has been studied by 1H NMR 
also in DMSO-d6 solutions (Supporting Information). Figure 1 
shows the time-dependent 1H NMR spectra for the solution of 
[Me4N][MAM-H] mixed with compound 1 in 1:1 equivalent. 
The spectra of the initial solutions were too complex to discern 
the species being produced. As time passed, however, the signals 
of the imine formed between 1 and decarboxylated product 
alanine began to grow from other unidentifiable signals, and 
the imine became only one dominating species in the solution 
in ~10 h. The spectra strongly supported the stereoselective de-
carboxylation because the imine formed between 1 and D-Ala 
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Table 1. The ee values of the D-alanine produced from the decarboxyl-
ation of [Me4N][MAM-H] in the presence of varied stoichiometric 
amount of 1

Stoichiometry
(1:[MAM-H]‒)

time to completion of 
decarboxylation ee

1:1.0
1:3.1
1:5.2
1:9.1
1:17

3 h
20 h
24 h
48 h
72 h

67%
62%
54%
42%
38%

(a) (b)uryl

binol part

imine

MAM-H

 represents the part of 1

[1-MAM-H]‒                   1-D-Alanine

Figure 2. (a): The energy-minimized structure for [1-MAM-H]‒. (b): 
A proposed route to the decarboxylation.

(1-D-Ala) was produced ~5.1 times more than 1-L-Ala. The 
peak assignments are described in the figures. The half-life of 
[MAM-H]‒ in the presence of compound 1 is roughly 2 h, which 
is much faster than that of the corresponding spontaneous case, 
837 h.

The similar 1H NMR studies for the solutions of MAM-H2 
and [Me4N]2[MAM] in the presence of one equivalent of 1 re-
vealed also that their decarboxylations were faster than those 
of the corresponding spontaneous cases. The stereoselectivities 
for D-Ala to L-Ala, however, were much less than the monoanion 
case, only 1.3:1 for MAM-H2 case and 1.2:1 for the dianion case.

It could be concluded from the studies above that the de-
carboxylation of monoanionic form of MAM in the presence of 
1 occurs much faster than the spontaneous case and moreover 
more stereoselectively compared to the dianion or neutral form. 
Therefore, we chose monoanionic form of MAM in further de-
carboxylation studies to reveal catalytic effect of compound 1.

In order to assess the catalytic property of compound 1, we 
varied the stoichiometry of 1 to [MAM-H]‒ and investigated the 
enantiomeric excess (ee) values of the decarboxylated product, 
alanine. The ee values were determined by 1H NMR integration 
using compound 1 as a chiral shift reagent. The detailed ex-
perimental procedures were given by Supporting Information. 
The experimental results are listed in Table 1. A longer time was 
required to complete the decarboxylation of the [MAM-H]‒ as 
the ratio of MAM-H/1 increases. This result reveals that the 
decarboxylation is a stereoselective catalytic process. The 
decrease of the ee values upon the increase of MAM-H/1 ratio 
is probably due to the spontaneous decarboxylation and/or partly 
by some unknown non-stereoselective decarboxylation process.

Even though the mechanism for the catalytic stereoselective 
decarboxylation in the presence of 1 was not clearly revealed 
in these studies, the imine formation between 1 and MAM could 
be proposed as one route leading to the stereoselective con-
sequence because the imine formation could activate the de-
carboxylation and trans-imination could also lead to the catalytic 
reaction. The energy minimized structure calculated by Mole-
cular Mechanics computation13 for the possible imine inter-
mediate, [1-MAM-H]‒, is shown in Figure 2a. The structure 
shows that one carboxylate is protonated whereas the other is 
hydrogen bonded to uryl group, and the proton on one carboxyl-
ate is hydrogen bonded to the other carboxylate forming a cyclic 
transition state. Since the removal of the protonated carboxylate 
group produces D-alanine, the route drawn in Figure 2b can be 
proposed as a possible decarboxylation mechanism.

In summary, we have demonstrated that the chiral aldehyde 
1 catalyzes the stereoselective decarboxylation of [MAM-H]‒. 
The stereoselectivity is maximum in monoanionic form of 
MAM. The D-form-favor in the decarboxylation may be ex-
plained by the removal of the protonated carboxylate group and 
protonation at the same site.
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