DOI QR코드

DOI QR Code

Current status on plant molecular farming via chloroplast transformation

엽록체 형질전환 유래 분자 농업의 연구 동향

  • Min, Sung-Ran (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Jeong, Won-Joong (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Kim, Suk-Weon (Microbial Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Lee, Jeong-Hee (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Chung, Hwa-Jee (GenDocs Inc.) ;
  • Liu, Jang-R. (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
  • 민성란 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 정원중 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김석원 (한국생명공학연구원 미생물자원센터) ;
  • 이정희 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 정화지 ((주) 젠닥스) ;
  • 유장렬 (한국생명공학연구원 식물시스템공학연구센터)
  • Received : 2010.08.06
  • Accepted : 2010.08.20
  • Published : 2010.09.30

Abstract

Chloroplast transformation in higher plants offers many attractive advantages over nuclear transformation, including a high-level accumulation of foreign proteins, multi-gene expression in single transformation event via transgene stacking in operons and no position effect due to site-specific integration of transgenes by homologous recombination. Most importantly, chloroplast transgenic plants are eco-friendly because their transgenes are maternally inheritance in most crop plants. However, chloroplast transformation system has limited success in crops alike nuclear transformation. In the past two decades, great progress has been made to overcome the limitations of chloroplast transformation, thus expending chloroplast bioreactor to several important crops including soybean, carrot, lettuce, and oilseed. Therefore, it has become possible that chloroplast transformation of crops can be used not only for the improvement of agronomic traits, but also for the production of vaccines and high valuable therapeutic proteins in pharmaceutical industry.

고등식물의 엽록체 형질전환은 핵 형질전환에서 기대 할 수 없는 여러 가지 이점을 가진다. 외래 단백질의 발현율을 획기적으로 높일 수 있고, 여러 유전자를 동시에 발현시킬 수 있으며, 상동재조합에 의한 부위-특이적 유전자 삽입으로 인해 유전자 침묵 및 위치효과가 없다. 더욱이, 대부분 작물은 화분을 통한 도입된 유전자의 전이가 불가능한 모계 유전을 하기 때문에 엽록체 형질전환은 환경 친화적이다. 엽록체 형질전환 시스템은 핵 형질 전환과 달리 작물에서의 성공에 제한적이었으나 지난 10년 동안 이런 한계가 극복되어 콩, 당근, 상추 및 유채 등의 작물에서도 성공하게 되었다. 그러므로 이제 작물의 엽록체 형질전환은 농업적 형질의 개선뿐 만 아니라, 고부가가치 백신과 의료용 단백질 생산을 통한 의약품 산업의 성장에 활용될 수 있을 것이다.

Keywords

References

  1. Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole Am, Oishi KK, Daniell H (2007) Field production and functional evaluation of chloroplast-derived interferon-alpha2b. Plant Biotechnol J 5:511-525 https://doi.org/10.1111/j.1467-7652.2007.00258.x
  2. Arlen PA, Singleton M, Adamovicz JJ, Ding Yi, Davoodi-Semiromi A, Daniell H (2008) Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun 76:3640-3650 https://doi.org/10.1128/IAI.00050-08
  3. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6:279-282 https://doi.org/10.1002/bies.950060608
  4. Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of ritavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261-270 https://doi.org/10.1111/j.1467-7652.2004.00072.x
  5. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534-1538 https://doi.org/10.1126/science.2897716
  6. Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49-56 https://doi.org/10.1007/BF00280200
  7. Chakrabarti S, Lutz K, Lertwiriyawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res 15:481-488 https://doi.org/10.1007/s11248-006-0018-z
  8. Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. In: Karasev AV (ed) Plant-produced microbial vaccines. Current Topics in Microbiology and Immunology 332, Springer-Verlag Berlin Heidelberg Germany, pp 33-54 https://doi.org/10.1007/978-3-540-70868-1_3
  9. Chung HJ, Suh YB, Jeong WJ, Min SR, Liu JR (2006) Chloroplast genetic transformation in higher plants: an encounter between prokaryote and eukaryote. J Plant Biotechnol 33:185-194 https://doi.org/10.5010/JPB.2006.33.3.185
  10. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581-586
  11. Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA 104:6879-6880 https://doi.org/10.1073/pnas.0702219104
  12. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345-348 https://doi.org/10.1038/nbt0498-345
  13. Daniell H, Carmona-Sanchez O, Burns B (2004) Chloroplast derived antibodies, biopharmaceuticals and edible vaccines. In: Fisher R, Schillberg S (eds) Molecular Farming. Wiley-VCH Verlag, Weinheim, Germany, pp 113-133
  14. Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779-1783 https://doi.org/10.1016/j.vaccine.2004.11.004
  15. Daniell H, Lee SB, Panchal T, Wiebe PO (2001a) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001-1009 https://doi.org/10.1006/jmbi.2001.4921
  16. Daniell H, Muthukumar B, Lee SB (2001b) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39:109-116 https://doi.org/10.1007/s002940100185
  17. Davarpanah SJ, Jung SH, Kim YJ, Park YI, Min SR, Liu JR, Jeong WJ (2009) Stable Plastid Transformation in Nicotiana benthamiana. J Plant Biol 52:244-250 https://doi.org/10.1007/s12374-009-9023-0
  18. De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71-74 https://doi.org/10.1038/83559
  19. DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852-862 https://doi.org/10.1104/pp.010233
  20. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479-489 https://doi.org/10.1007/s11103-004-0192-4
  21. Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: Tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333-345 https://doi.org/10.1046/j.1365-313X.1999.00543.x
  22. Elderbaum O, Stein D, Holland N, Gafni Y, Livneh O, Novick D, Rubinstein M, Sele I (1992) Expression of active human interferon beta in transgenic plants. J Interferon Res 12:449-453 https://doi.org/10.1089/jir.1992.12.449
  23. Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71-79 https://doi.org/10.1046/j.1467-7652.2003.00008.x
  24. Gruissem W, Tonkyn JC (1993) Control mechanisms of plastid gene expression. CRC Crit Rev Plant Sci 21:19-55
  25. Guda C, Lee SB, Daniell H (2000) Stable expression of biodegradable protein based polymer in tobacco chloroplasts. Plant Cell Rep 19:257-262 https://doi.org/10.1007/s002990050008
  26. Hagemann R (2004) The sexual inheritance of plant organelles. In Daniell H, Chase CD, eds, Molecular Biology and Biotechnology of Plant Organelles. Springer, Dordrecht, The Netherlands, pp 93-113
  27. Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111-114 https://doi.org/10.1023/A:1022180315462
  28. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172-1176 https://doi.org/10.1038/81161
  29. Jeong SW, Jeong WJ, Woo JW, Choi DW, Park YI, Liu JR (2004) Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco. Plant Cell Rep 22:747-751 https://doi.org/10.1007/s00299-003-0740-4
  30. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910-915 https://doi.org/10.1038/12907
  31. Kittiwongwattana C, Lutz K, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 64:137-143 https://doi.org/10.1007/s11103-007-9140-4
  32. Ko SM, Kim HC, Yoo BH, Woo JW, Chung HJ, Choi DW, Liu JR (2006) Production of human serum albumin in chloroplast-transformed tobacco plants. J Plant Biotechnol 33:233-236 https://doi.org/10.5010/JPB.2006.33.4.233
  33. Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840-1845 https://doi.org/10.1073/pnas.96.5.1840
  34. Koya V, Moayen M, Leppla SH, Daniell H (2005) Plant based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266-8274 https://doi.org/10.1128/IAI.73.12.8266-8274.2005
  35. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843-2854 https://doi.org/10.1104/pp.104.045187
  36. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1-13 https://doi.org/10.1023/A:1022100404542
  37. Leelavathi S, Reddy VS (2003) Chloroplast expression of Histagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49-58 https://doi.org/10.1023/A:1022114427971
  38. Liu CW, Lin CC, Chen J, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733-1744 https://doi.org/10.1007/s00299-007-0374-z
  39. Liu JR, Jeong WJ, Chung HJ, Min SR, Park JY (2006) Plastid transformation system to prevent the intramolecular recombination of transgene. PCT/2006/004377
  40. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289-313 https://doi.org/10.1146/annurev.arplant.55.031903.141633
  41. McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY) 13:362-365 https://doi.org/10.1038/nbt0495-362
  42. Molina S, Hervas-Stubbs S, Daniell H, Mingo-Castel AM, Veramendi J (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141-153 https://doi.org/10.1046/j.1467-7652.2004.00057.x
  43. Molina S, Veramendi J, Hervas-Stubbs S (2005) Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus. Virology 342:266-275 https://doi.org/10.1016/j.virol.2005.08.009
  44. Okumura S, Sawada M, Park Y, Hayashi T, Shimamura M, Takase H, Tomizawa KI (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637-646 https://doi.org/10.1007/s11248-006-9009-3
  45. Ruf S, Hermann M, Berger LJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870-875 https://doi.org/10.1038/nbt0901-870
  46. Ruhlman T, Ahangri R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplast-oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495-510 https://doi.org/10.1111/j.1467-7652.2007.00259.x
  47. Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of ${\beta}-ketothiolase$. Plant Physiol 138:1232-1246 https://doi.org/10.1104/pp.104.057729
  48. Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344-1352 https://doi.org/10.1104/pp.103.020958
  49. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209-216 https://doi.org/10.1046/j.1365-313X.1999.00508.x
  50. Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20-24 https://doi.org/10.1007/s002990050525
  51. Singh AK, Verma SS, Bansal KC (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19:113-119 https://doi.org/10.1007/s11248-009-9290-z
  52. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333-338 https://doi.org/10.1038/73796
  53. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526-8530 https://doi.org/10.1073/pnas.87.21.8526
  54. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913-917 https://doi.org/10.1073/pnas.90.3.913
  55. Torrado J, Carrascosa C (2003) Pharmacological characteristics of parenteral IGF-1 administration. Curr Pharm Biotechnol 4:123-140 https://doi.org/10.2174/1389201033489865
  56. Tregoning JS, Nixon P, Kuroda H, Svab Z (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res 31:1174-1179 https://doi.org/10.1093/nar/gkg221
  57. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129-1143 https://doi.org/10.1104/pp.107.106690
  58. Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protocol 3:739-758 https://doi.org/10.1038/nprot.2007.522
  59. Wang HH, Yin WB, Hu ZM (2009) Advances in chloroplast engineering. J Genet Genomics 36:387-398 https://doi.org/10.1016/S1673-8527(08)60128-9
  60. Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374-4384 https://doi.org/10.1016/j.vaccine.2004.01.069
  61. Youm JW, Jeon JH, Kim H, Min SR, Kim MS, Joung H, Jeong WJ, Kim HS (2010) High-level expression of a human ${\beta}-site$ APP cleaving enzyme in transgenic tobacco chloroplasts and its immunogenicity in mice. Transgenic Res DOI 10.1007/s112480-010-9383-8
  62. Zubko MK, Zubko EI, Zuilen KV, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523-530

Cited by

  1. Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) vol.38, pp.1, 2011, https://doi.org/10.5010/JPB.2011.38.1.042