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STRONGLY COTORSION (TORSION-FREE) MODULES
AND COTORSION PAIRS

Hangyu Yan

Abstract. In this paper, strongly cotorsion (torsion-free) modules are
studied and strongly cotorsion (torsion-free) dimension is introduced. It
is shown that every module has a special SCn-preenvelope and an ST Fn-
cover for any n ∈ N based on some results of cotorsion pairs from [9].
Some characterizations of strongly cotorsion (torsion-free) dimension of
a module are given.

1. Introduction

Throughout this paper, all rings are associative with identity and all modules
are unitary. For a ring R, we write Mod-R for the category of all right R-
modules. For a module M, M+ = HomZ(M,Q/Z) will denote the character
module of M and I−i(M) (Pi(M)) will denote the i-th cosyzygy (syzygy) of
M in I (P), where I (P) is an injective (a projective) resolution of M.

We first recall some known notions and facts which we need in the latter
sections.

(1) A right R-module M is called (Enochs) cotorsion [7] if Ext1R(F, M) = 0
for every flat right R-module F. M is called strongly cotorsion [15] if Ext1R(F,M)
= 0 for every right R-module F of finite flat dimension. A left R-module N is
called strongly torsion-free [15] if TorR

1 (F, N) = 0 for every right R-module F
of finite flat dimension.

(2) Let M be a right R-module and C be a class of right R-modules. A
homomorphism φ : M → C with C ∈ C is called a C-preenvelope of M [6, 8]
if for any homomorphism f : M → C

′
with C

′ ∈ C, there is a homomorphism
g : C → C

′
such that gφ = f. Moreover, if the only such g are automorphisms

of C when C = C
′
and f = φ, the C-preenvelope φ is called a C-envelope of M .

C is a (pre)enveloping class provided that each module has a C-(pre)envelope.
Dually, C-precovers, C-covers, and covering classes of modules can be defined.
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(3) Let C⊥ = Ker Ext1R(C,−) = {N ∈ Mod-R | Ext1R(C, N) = 0 for all
C ∈ C} and ⊥C = Ker Ext1R(−, C) = {N ∈ Mod-R | Ext1R(N, C) = 0 for
all C ∈ C}. A C-preenvelope φ : M → C is called special if φ is monic and
cokerφ ∈ ⊥C. Dually, the notion of a special C-precover of a module M can be
defined.

(4) Let A , B ⊆ Mod-R. The pair (A , B) is called a cotorsion pair (or
cotorsion theory) [8, 9, 11] if A = ⊥B and B = A ⊥. Let C be a class
of R-modules. Following [9], EC = (⊥(C⊥), C⊥) is called the cotorsion pair
generated by C , and VC = (⊥C , (⊥C )⊥) is called the cotorsion pair cogenerated
by C . A cotorsion pair E = (A , B) is called complete if each module has a
special B-preenvelope (A -precover) and hereditary if Exti

R(A,B) = 0 for all
i ≥ 1, A ∈ A and B ∈ B. E is called perfect provided that A is a covering
class and B is an enveloping class. E is called closed provided that the class A
is closed under direct limits in Mod-R. Let S be a set of modules, the cotorsion
pair (⊥(S⊥),S⊥) is complete [9].

(5) Let C be a class of R-modules. C is coresolving provided that C contains
all injective modules, is closed under extensions and C ∈ C whenever 0 → A →
B → C → 0 is a short exact sequence such that A, B ∈ C . Dually, C is resolving
provided that C contains all projective modules, is closed under extensions and
A ∈ C whenever 0 → A → B → C → 0 is a short exact sequence such that
B, C ∈ C . For a cotorsion pair E = (A , B), it is well known that E is hereditary
if and only if A is resolving or B is coresolving.

Let C be a class of R-modules. For a cardinal κ, we denote by C≤κ the
subclass of C consisting of the modules possessing a projective resolution con-
taining only ≤ κ-generated modules. We denote by Fn (In,Pn) the class of
all right R-modules of flat (injective, projective) dimension ≤ n, where n is
a nonnegative integer. Furthermore, F (P) will denote the class of all right
R-modules of finite flat (projective) dimension. We use fd(M) and id(M) to
denote the usual flat and injective dimensions of a module M respectively.
rFPD(R) will denote the supremum of the projective dimensions of all right
R-modules of finite projective dimension.

In Section 2, we introduce the concept of strongly cotorsion dimension. We
show that every module has a special SCn-preenvelope for any n ∈ N. Some
characterizations of strongly cotorsion dimension of a module are given.

In Section 3, we introduce the concept of strongly torsion-free dimension.
We show that every module has an ST Fn-cover for any n ∈ N. Some charac-
terizations of strongly torsion-free dimension of a module are given.

For unexplained concepts, notions and facts, we refer the reader to [1, 3, 4,
5, 10].

2. Strongly cotorsion modules

We start with the following definition.
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Definition 2.1. Given a right R-module M. Let scd(M) = inf{n : there exists
an exact sequence 0 → M → C0 → C1 → · · · → Cn → 0 of right R-modules,
where each Ci is strongly cotorsion} and call scd(M) the strongly cotorsion
dimension of M. If no such n exists, set scd(M) = ∞.

In what follows, SCn denotes the class of all right R-modules of strongly
cotorsion dimension ≤ n, where n is a nonnegative integer. Clearly, SC0 is the
class of all strongly cotorsion right R-modules.

Lemma 2.2. Let R be a ring and M a right R-module. Then M is strongly
cotorsion if and only if Exti

R(F, M) = 0 for every F ∈ F and i ≥ 1.

Proof. The assertion is clear, since all syzygies of modules in F are again in
F . �

Proposition 2.3. Let R be a ring. The class SC0 is coresolving.

Proof. By Lemma 2.2, the cotorsion pair (⊥SC0,SC0) is hereditary, so the claim
follows by [9, Lemma 2.2.10]. �

Lemma 2.4 ([13, Lemma 1.5(3)]). Let R be a ring and n ∈ N. Let κ =
card(R)+ℵ0. Then (Fn, (Fn)⊥) is a cotorsion pair generated by F≤κ

n .

Theorem 2.5. Let R be a ring. Then (⊥SC0,SC0) is a hereditary com-
plete cotorsion pair and every right R-module has a special SC0-preenvelope.
In particular, (⊥SC0,SC0) is a cotorsion pair generated by

⋃
n∈N F≤κ

n , where
κ =card(R)+ℵ0.

Proof. By definition, SC0 = F⊥, thus (⊥SC0,SC0) = (⊥(F⊥),F⊥) is a cotor-
sion pair. Since SC0 is a coresolving class by Proposition 2.3, the cotorsion
pair (⊥SC0,SC0) is hereditary. By Lemma 2.4, SC0 = F⊥ = (

⋃
n∈N Fn)⊥ =⋂

n∈N F⊥n =
⋂

n∈N F≤κ
n

⊥ = (
⋃

n∈N F≤κ
n )⊥, where κ = card(R)+ℵ0. So (⊥SC0,

SC0) is a cotorsion pair generated by
⋃

n∈N F≤κ
n . It is easy to see that

⋃
n∈N F≤κ

n

has a representative set of elements, then the cotorsion pair (⊥SC0,SC0) is com-
plete, and hence every right R-module has a special SC0-preenvelope. �

We are now ready to compute the strongly cotorsion dimension of a non-zero
module. We start with the following definition.

Definition 2.6. Let M be a non-zero right R-module, δ(M) = inf{n ∈ N |
Extn+1

R (F,M) = 0 for all F ∈ F}, and λ(M) = sup{n ∈ N | Extn
R(F,M) 6= 0

for some F ∈ F}.
Proposition 2.7. Let R be a ring and M a non-zero right R-module. Then
scd(M) = δ(M) = λ(M).

Proof. The equality δ(M) = λ(M) is obvious. If scd(M) = ∞, δ(M) ≤ scd(M)
is obvious. Suppose scd(M) = n, i.e., there is an exact sequence 0 → M →
C0 → · · · → Cn → 0 of right R-modules with each Ci strongly cotorsion.
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For any F ∈ F , since Extj
R(F,Ci) = 0 for any i and j ≥ 1, by dimension

shifting, Extn+1
R (F, M) ∼= Ext1R(F,Cn) = 0, δ(M) ≤ n = scd(M) in this case.

So δ(M) ≤ scd(M) always holds. To prove scd(M) ≤ δ(M), it is enough to
prove scd(M) ≤ δ(M) if δ(M) is finite. Let δ(M) = m, by dimension shifting,
Ext1R(F, I−m(M)) ∼= Extm+1

R (F, M) = 0 for every F ∈ F , thus I−m(M) is
strongly cotorsion. Hence M has an exact sequence 0 → M → E0 → E1 →
· · · → Em−1 → Cm → 0 such that Cm is strongly cotorsion and Ei is injective
for any i ∈ {0, 1, . . . , m − 1}. Since I0 ⊆ SC0, scd(M) ≤ m by definition, i.e.,
scd(M) ≤ δ(M). So scd(M) = δ(M). �

Let M be a module and C be a class of modules. Recall that M is C-
filtered, provided that there are an ordinal µ and a continuous chain of modules,
(Mα|α ≤ µ), consisting of submodules of M such that M = Mµ, and each of
the modules Mα+1/Mα (α < µ) is isomorphic to an element of C. A continuous
chain of modules (Mα|α ≤ µ) is a sequence of modules satisfying M0 = 0,Mα ⊆
Mα+1 for all α < µ and Mα =

⋃
β<α Mβ for all limit ordinals α ≤ µ (see [9,

Definition 3.1.1]).
For example, if C is the class of all simple R-modules, then the C-filtered

R-modules coincide with the semiartinian R-modules.
The following lemma due to Eklof gives an important sufficient condition for

the vanishing of Ext.

Lemma 2.8 (Eklof Lemma). Let N be a module and M be a ⊥N -filtered
module. Then M ∈ ⊥N.

Lemma 2.9 ([9, Corollary 3.2.4]). Let R be a ring and S a set of modules
containing R. Then the class ⊥(S⊥) consists of all direct summands of S-filtered
modules.

Theorem 2.10. Let R be a ring and n ∈ N, and κ = card(R)+ℵ0. Then the
following are equivalent for a non-zero right R-module M :

(1) scd(M) ≤ n.
(2) δ(M) ≤ n.
(3) λ(M) ≤ n.

(4) inf{m | Extm+1
R (F,M) = 0 for all F ∈ ⋃i∈N F≤κ

i } ≤ n.

(5) sup{m | Extm
R (F, M) 6= 0 for some F ∈ ⋃i∈N F≤κ

i } ≤ n.

(6) I−n(M) is strongly cotorsion.
(7) There is an exact sequence 0 → M → C0 → · · · → Cn → 0 of right

R-modules with each Ci strongly cotorsion.
(8) If 0 → M → L0 → · · · → Ln−1 → W → 0 is an exact sequence of

right R-modules with each Li strongly cotorsion, then W is strongly
cotorsion.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) follows from Proposition 2.7.
(1) ⇐⇒ (6) is easy to see from the proof of Proposition 2.7.
(1) ⇐⇒ (7) is obvious by definition.
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(6) =⇒ (7). Let 0 → M → E0 → · · · → En−1 → I−n(M) → 0 be an exact
sequence with E0, E1, . . . , En−1 injective, by hypothesis, the exact sequence
0 → M → E0 → · · · → En−1 → I−n(M) → 0 satisfies the condition of (7).

(7) =⇒ (8). By hypothesis, scd(M) ≤ n and so Extn+1
R (F,M) = 0 for every

F ∈ F . Let 0 → M → L0 → · · · → Ln−1 → N → 0 be an exact sequence
of right R-modules with each Li strongly cotorsion. For any F ∈ F , since
Extk

R(F,Li) = 0 for any k ≥ 1, by dimension shifting, we have Ext1R(F, N) ∼=
Extn+1

R (F,M) = 0, i.e., N is strongly cotorsion.
(8) =⇒ (6) is obvious because M has an exact sequence 0 → M → E0 →

· · · → En−1 → I−n(M) → 0 with E0, E1, . . . , En−1 injective.
(2) =⇒ (4) is trivial because

⋃
i∈N F≤κ

i ⊆ F .
(4) =⇒ (2). For any F ∈ F , there exists m ∈ N such that F ∈ Fm. By

Lemmas 2.4 and 2.9, F is a direct summand of an F≤κ
m -filtered module. By

hypothesis and Lemma 2.8, Extn+1
R (F, M) = 0 and so δ(M) ≤ n.

The proof of (3) ⇐⇒ (5) is similar to that of (2) ⇐⇒ (4). �

Proposition 2.11. Let 0 → M1 → M2 → M3 → 0 be an exact sequence
of right R-modules. Assume scd(M1) = n. Then, for any integer m ≥ n,
scd(M2) ≤ m ⇐⇒ scd(M3) ≤ m.

Proof. If M1 = 0, we are done. Suppose M1 6= 0. Consider a following exact
and commutative diagram of right R-modules:

0

��

0

��

0

��
0 // M1

//

��

M2
//

��

M3
//

��

0

0 // H0
//

��

H0

⊕
I0

//

��

I0
//

��

0

...

��

...

��

...

��
0 // Hm−2

//

��

Hm−2

⊕
Im−2

//

��

Im−2
//

��

0

0 // Hm−1
//

��

Hm−1

⊕
Im−1

//

��

Im−1
//

��

0

0 // K1
//

��

K2
//

��

K3
//

��

0

0 0 0

where Hi and Ii are injective (0 ≤ i ≤ m− 1). It follows from scd(M1) = n and
Theorem 2.10 that K1 is strongly cotorsion. Hence K2 is strongly cotorsion
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if and only if K3 is strongly cotorsion by Proposition 2.3. This completes the
proof. �

The following proposition shows that the notion of strongly cotorsion di-
mension is similar to that of injective dimension.

Proposition 2.12. Let R be a ring and 0 → A → B → C → 0 a short exact
sequence of right R-modules. Then

(1) scd(C) ≤ max{scd(A)−1, scd(B)}. If scd(B) < scd(A), then scd(C) =
scd(A)− 1; if scd(B) > scd(A), then scd(C) = scd(B).

(2) scd(B) ≤ max{scd(A), scd(C)}. If scd(A) ≤ scd(C), then scd(B) =
scd(C); if scd(C) ≤ scd(A)− 2, then scd(B) = scd(A). In particular,
scd(C) = scd(B) if A is strongly cotorsion.

(3) scd(A) ≤ max{scd(C)+1, scd(B)}. If scd(B) < scd(C), then scd(A) =
scd(C) + 1; if scd(B) > scd(C), then scd(A) = scd(B).

Proof. For any F ∈ F , we have the long exact sequence

Ext1R(F, A) → Ext1R(F, B) → Ext1R(F,C) → Ext2R(F,A)

→ · · · → Exti
R(F, C) → Exti+1

R (F,A) → · · ·.
If one of A, B and C is zero, we are done. If each of A,B and C is not
zero, it is easy to get (1), (2), (3) by Proposition 2.7 and the above long exact
sequence. �

By Proposition 2.12, we immediately have the following corollary.

Corollary 2.13. Let R be a ring and 0 → A → B → C → 0 a short exact
sequence of right R-modules. If two of scd(A), scd(B) and scd(C) are finite,
then so is the third.

Obviously, F ⊆ ⊥SC0. The following proposition gives a criterion when the
equality holds.

Proposition 2.14. Let R be a ring. Then F = ⊥SC0 if and only if F is closed
under direct sums.

Proof. “ =⇒ ” is trivial because ⊥SC0 is closed under direct sums.
“ ⇐= .” Since F is closed under direct sums, there exists n ∈ N such that

F = Fn. Thus (⊥SC0,SC0) = (⊥SC0,F⊥) = (⊥SC0,F⊥n ), i.e., (⊥SC0,F⊥n ) is
a cotorsion pair. Since (Fn,F⊥n ) is a cotorsion pair by Lemma 2.4, ⊥SC0 =
⊥(F⊥n ) = Fn = F . �
Proposition 2.15. Let R be a ring and {Mi}i∈I a family of right R-modules.
Then scd(

∏
i∈I Mi) = sup{scd(Mi)}i∈I .

Proof. Without loss of generality, we may assume that each Mi is non-zero.
Since Extj

R(F,
∏

i∈I Mi) ∼= ∏
i∈I Extj

R(F,Mi) for any F ∈ F and j ≥ 0,
sup{scd(Mi)}i∈I ≤ scd(

∏
i∈I Mi) by Proposition 2.7. If sup{scd(Mi)}i∈I is in-

finite, we are done. Suppose that sup{scd(Mi)}i∈I is finite, let sup{scd(Mi)}i∈I
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= n, then scd(Mi) ≤ n for every i ∈ I, and so Extn+1
R (F,Mi) = 0 for every

F ∈ F and i ∈ I. Thus Extn+1
R (F,

∏
i∈I Mi) = 0, i.e., scd(

∏
i∈I Mi) ≤ n by

Theorem 2.10. Hence scd(
∏

i∈I Mi) ≤ sup{scd(Mi)}i∈I and so scd(
∏

i∈I Mi) =
sup{scd(Mi)}i∈I in this case. So the assertion holds. �

Proposition 2.16. Let R be a ring and κ = card(R)+ℵ0. Then every right
strongly cotorsion R-module is injective if and only if every right R-module is
an
⋃

n∈N F≤κ
n -filtered module.

Proof. “ =⇒ ”. By hypothesis, we have ⊥SC0 = ⊥I0 =Mod-R. Since ⊥SC0 =
⊥((
⋃

n∈N F≤κ
n )⊥) by Theorem 2.5, for any H ∈ ⊥SC0, H is a direct summand

of an
⋃

n∈N F≤κ
n -filtered module by Lemma 2.9. So every right R-module is a

direct summand of an
⋃

n∈N F≤κ
n -filtered module. Then every right R-module

is an
⋃

n∈N F≤κ
n -filtered module by [9, Lemma 4.2.10] (applied for κ+).

“ ⇐= ”. By hypothesis and the proof of “ =⇒ ”, ⊥SC0 =Mod-R by Lemma
2.9. Since (⊥SC0,SC0) is a cotorsion pair, SC0 = (⊥SC0)⊥ =(Mod-R)⊥ = I0,
i.e., every right strongly cotorsion R-module is injective. �

Now, we define the global strongly cotorsion dimension of a ring R.

Definition 2.17. Let R be a ring. Define rSCD(R) = sup{scd(M) | M ∈
Mod-R}. rSCD(R) is called the right global strongly cotorsion dimension of
R.

Proposition 2.18. Let R be a ring. Then the following are equivalent:
(1) rSCD(R) = 0.
(2) Every right R-module M is strongly cotorsion.
(3) rFPD(R) = 0.

Proof. (1) ⇐⇒ (2) follows from definition.
(2) =⇒ (3). By hypothesis, ⊥SC0 = ⊥(Mod-R) = P0. Since SC0 = F⊥,F ⊆

⊥SC0 = P0. Obviously P0 ⊆ F , thus F = P0. Therefore, every flat right R-
module is projective, i.e., R is right perfect, and so F = P. Thus P = P0, i.e.,
rFPD(R) = 0.

(3) =⇒ (2). Since rFPD(R) = 0, R is right perfect by [2, Theorem 6.3].
Hence F = P = P0. Thus SC0 = F⊥ = P⊥0 =Mod-R, i.e., every right R-
module is strongly cotorsion. �

Proposition 2.19. Let R be a ring. Then the following are equivalent:
(1) rSCD(R) ≤ 1.
(2) SC0 is closed under factor modules.
(3) I−1(M) is strongly cotorsion for every right R-module M.

Proof. (1) =⇒ (2). For any L ∈ SC0 and K ≤ L, we have the short exact
sequence 0 → K → L → L/K → 0 of right R-modules. Since scd(K) ≤ 1 by
hypothesis and scd(L) = 0, scd(L/K) = 0 by Proposition 2.12, i.e., L/K is
strongly cotorsion. So SC0 is closed under factor modules.
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(2) =⇒ (3) is trivial.
(3) =⇒ (1) follows from Theorem 2.10. �

By Proposition 2.19, we immediately have the following corollary.

Corollary 2.20. Let R be a ring. If F ⊆ P1, then rSCD(R) ≤ 1.

Theorem 2.21. Let R be a ring and n ≥ 1. Then (⊥SCn,SCn) is a hereditary
complete cotorsion pair. In particular, it is generated by Pn(

⋃
n∈N F≤κ

n ), where
κ = card(R)+ℵ0.

Proof. By Theorem 2.10, we have SCn = Ker Extn+1
R (F ,−) = (Pn(F))⊥. Thus

(⊥SCn,SCn) = (⊥((Pn(F))⊥), (Pn(F))⊥) is a cotorsion pair. By Propositions
2.3 and 2.12, it is easy to see that SCn is a coresolving class, so (⊥SCn,SCn)
is hereditary. Obviously SCn ⊆ (Pn(

⋃
n∈N F≤κ

n ))⊥ for κ = card(R)+ℵ0.

For any C ∈ (Pn(
⋃

n∈N F≤κ
n ))⊥, we have Ext1R(M, C) = 0 for every M ∈

Pn(
⋃

n∈N F≤κ
n ), and so Extn+1

R (W,C) = 0 for every W ∈ ⋃n∈N F≤κ
n . Hence

Ext1R(W,I−n(C)) = 0 by dimension shifting and so C ∈ SCn by Theorem
2.10. Then (Pn(

⋃
n∈N F≤κ

n ))⊥ ⊆ SCn. Therefore, SCn = (Pn(
⋃

n∈N F≤κ
n ))⊥.

Since
⋃

n∈N F≤κ
n has a representative set of elements, Pn(

⋃
n∈N F≤κ

n ) also has
a representative set of elements. Thus (⊥SCn,SCn) is complete by [9, Theorem
3.2.1]. �

Proposition 2.22. Let R and S be rings. If C is a strongly cotorsion right
S-module and RMS is a bimodule with M a flat S-module. Then HomS(M, C)
is a strongly cotorsion right R-module.

Proof. The proof is modeled on that of [12, Lemma 2.14]. For any right R-
module F with finite flat dimension, it is easy to see that the flat dimen-
sion of F ⊗R M is also finite as a right S-module. By hypothesis, we have
Ext1S(F ⊗R M, C) = 0. Furthermore, for any projective right R-module P, we
have Exti

S(P ⊗ M, C) = 0 for any i > 0 by Lemma 2.2. Then there exists
the exact sequence 0 → Ext1R(F, HomS(M, C)) → Ext1S(F ⊗R M, C) by the
Grothendieck spectral sequence theorem [14, Theorem 5.8.3]. So

Ext1R(F, HomS(M,C)) = 0

and hence HomS(M, C) is a strongly cotorsion right R-module. �

By Proposition 2.22, we immediately have the following corollaries.

Corollary 2.23. Let f : R → S be a ring homomorphism. If C is a strongly
cotorsion right S-module, then C is a strongly cotorsion right R-module.

Corollary 2.24. Let R be a commutative ring and S a multiplicative set of
R. If C is a strongly cotorsion S−1R-module, then C is a strongly cotorsion
R-module.
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Corollary 2.25. Let R be a commutative ring. If M is a flat R-module and
C is a strongly cotorsion R-module, then HomR(M,C) is a strongly cotorsion
R-module.

Corollary 2.26. If R is a commutative Noetherian ring and R̂ is the I-adic
completion of R, where I is a non-trivial ideal of R. Assume that M is a strongly
cotorsion R̂-module, then M is a strongly cotorsion R-module.

3. Strongly torsion-free modules

We start with the following definition.

Definition 3.1. Given a left R-module N. Let stfd(M) = inf{n : there exists
an exact sequence 0 → Tn → · · · → T0 → N → 0 of left R-modules, where each
Ti is strongly torsion-free} and call stfd(M) the strongly torsion-free dimension
of N. If no such n exists, set stfd(N) = ∞.

In what follows, ST Fn denotes the class of all left R-modules of strongly
torsion-free dimension ≤ n, where n is a nonnegative integer. Clearly, ST F0

is the class of all strongly torsion-free left R-modules.
The following proposition shows that the notion of strongly cotorsion right

R-modules can be seen as the dual of strongly torsion-free left R-modules in
some sense.

Proposition 3.2. Let R be a ring and N a left R-module. Then N is strongly
torsion-free if and only if N+ is strongly cotorsion.

Proof. The result follows from the isomorphism (TorR
1 (F, N))+ ∼= Ext1R(F, N+)

for every F ∈ F . �
Lemma 3.3. Let R be a ring and N a left R-module. Then N is strongly
torsion-free if and only if TorR

i (F,N) = 0 for any F ∈ F and i ≥ 1.

Proof. The proof is similar to that of Lemma 2.2. �
Proposition 3.4. Let R be a ring. The class ST F0 is resolving.

Proof. To prove that ST F0 is resolving, it suffices to show that ST F0 is closed
under kernels of epimorphisms because ST F0 =Ker TorR

1 (F ,−) by definition.
Let 0 → A → B → C → 0 be a short exact sequence of left R-modules
with B and C strongly torsion-free. For any F ∈ F , we have the exact se-
quence 0 = TorR

2 (F, C) → TorR
1 (F, A) → TorR

1 (F, B) = 0 by Lemma 3.3, then
TorR

1 (F, A) = 0 and hence A ∈ ST F0. Thus ST F0 is resolving. �
Proposition 3.5. Let R be a ring. The class ST F0 is closed under direct
limits, pure-epimorphic images and pure submodules.

Proof. Since the functor TorR
1 (F,−) commutes with direct limits, ST F0 is

closed under direct limits. Let B be a strongly torsion-free left R-module and
C a pure-epimorphic image of B, we have the pure exact sequence 0 → A →
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B → C → 0. For any F ∈ F , we have the exact sequences 0 = TorR
1 (F, B) →

TorR
1 (F, C) → F ⊗A → F ⊗B → F ⊗ C → 0 and 0 → F ⊗A → F ⊗B →

F ⊗ C → 0. Thus TorR
1 (F, C) = 0 and so C is strongly torsion-free, i.e., ST F0

is closed under pure-epimorphic images. By Proposition 3.4, ST F0 is closed
under pure submodules. �

Lemma 3.6 ([9, Theorem 3.2.9]). Let (A,B) be the cotorsion pair cogenerated
by a subclass of pure injective modules. Then (A,B) is perfect and closed.

Theorem 3.7. Let R be a ring. Then (ST F0, (ST F0)⊥) is a closed hereditary
perfect cotorsion pair, hence ST F0 is a covering class.

Proof. For any F ∈ F , we have (TorR
1 (F, N))+ ∼= Ext1R(N, F+). So N is

strongly torsion-free if and only if N ∈ ⊥(F+). Thus ST F0 = ⊥(F+), and
so (ST F0, (ST F0)⊥) = (⊥(F+), (⊥(F+))⊥) is a cotorsion pair cogenerated by
F+. Since ST F0 is resolving, (ST F0, (ST F0)⊥) is hereditary. Since F+ is a
subclass of pure injective modules, (ST F0, (ST F0)⊥) is closed and perfect by
Lemma 3.6. �

Now, we are ready to compute the strongly torsion-free dimension of a non-
zero module. We start with the following definition.

Definition 3.8. Let N be a non-zero left R-module,

ζ(N) = inf{n ∈ N | TorR
n+1(F,N) = 0 for all F ∈ F}, and

ν(N) = sup{n ∈ N | TorR
n (F, N) 6= 0 for some F ∈ F}.

Proposition 3.9. Let R be a ring and N a non-zero left R-module. Then
stfd(N) = ζ(N) = ν(N).

Proof. The proof is similar to that of Proposition 2.7. �

Theorem 3.10. Let R be a ring and n ∈ N. Then the following are equivalent
for a non-zero left R-module N :

(1) stfd(N) ≤ n.
(2) ζ(N) ≤ n.
(3) ν(N) ≤ n.
(4) Pn(N) is strongly torsion-free.
(5) There is an exact sequence 0 → Tn → · · · → T0 → N → 0 of left

R-modules with each Ti strongly torsion-free.
(6) If 0 → K → Hn−1 → · · · → H0 → N → 0 is an exact sequence of

left R-modules with each Hi strongly torsion-free, then K is strongly
torsion-free.

Proof. The proof is similar to that of Theorem 2.10. �

The following proposition shows that the notion of strongly torsion-free di-
mension is similar to that of flat dimension.
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Proposition 3.11. Let R be a ring and 0 → A → B → C → 0 a short exact
sequence of left R-modules. Then

(1) stfd(C) ≤ max{stfd(A) + 1, stfd(B)}. If stfd(B) < stfd(A), then
stfd(C) = stfd(A)+1; if stfd(B) > stfd(A), then stfd(C) = std(B).

(2) stfd(B)≤max{stfd(A), stfd(C)}. If stfd(C)≤stfd(A), then stfd(B)
= std(A); if stfd(A) ≤ stfd(C)− 2, then stfd(B) = stfd(C). In par-
ticular, stfd(B) = stfd(A) if C is strongly torsion-free.

(3) stfd(A) ≤ max{stfd(C) − 1, stfd(B)}. If stfd(B) < stfd(C), then
stfd(A) = stfd(C)−1; if stfd(B) > stfd(C), then stfd(A) = stfd(B).

Proof. For any F ∈ F , we have the long exact sequence · · · → TorR
i+1(F, C) →

TorR
i (F, A) → · · · → TorR

2 (F,C) → TorR
1 (F, A) → TorR

1 (F,B) → TorR
1 (F, C).

If one of A, B and C is zero, we are done. If each of A,B and C is not
zero, it is easy to get (1), (2), (3) by Proposition 3.9 and the above long exact
sequence. �

By Proposition 3.11, we immediately have the following corollary.

Corollary 3.12. Let R be a ring and 0 → A → B → C → 0 a short exact
sequence of left R-modules. If two of stfd(A), stfd(B) and stfd(C) are finite,
then so is the third.

Proposition 3.13. Let R be a ring and {Ni}i∈I a family of left R-modules.
Then stfd(

⊕
i∈I Ni) = sup{stfd(Ni)}i∈I .

Proof. Without loss of generality, we may assume that each Ni is non-zero.
Since TorR

j (F,
⊕

i∈I Ni) ∼= ⊕
i∈I TorR

j (F, Ni) for any F ∈ F and j ≥ 0,
sup{stfd(Ni)}i∈I ≤ stfd(

⊕
i∈I Mi) by Proposition 3.9. If sup{stfd(Ni)}i∈I

is infinite, we are done. Suppose that sup{stfd(Ni)}i∈I is finite. Let

sup{stfd(Ni)}i∈I = n.

Then stfd(Ni) ≤ n for every i ∈ I, and so TorR
n+1(F, Ni) = 0 for every

F ∈ F and i ∈ I. Thus TorR
n+1(F,

⊕
i∈I Ni) = 0, stfd(

⊕
i∈I Ni) ≤ n by The-

orem 3.10. So stfd(
⊕

i∈I Ni) ≤ sup{stfd(Ni)}i∈I . Hence stfd(
⊕

i∈I Ni) =
sup{stfd(Ni)}i∈I in this case. So the assertion holds. �

Lemma 3.14 ([9, Lemma 3.2.10]). Let R be a ring. Then the class of all pure
injective modules is cosyzygy closed.

Theorem 3.15. Let R be a ring and n ≥ 1. Then (ST Fn, (ST Fn)⊥) is a
closed hereditary perfect cotorsion pair, hence, ST Fn is a covering class.

Proof. By Theorem 3.10, we have ST Fn = KerTorR
n+1(F ,−). Therefore,

ST Fn = KerExtn+1
R (−,F+) = ⊥(I−n(F+)) follows from the isomorphism

(TorR
n+1(F , N))+ ∼= Extn+1

R (N,F+) for every F ∈ F and N ∈ R-Mod and di-
mension shifting. By Lemmas 3.6 and 3.14, (ST Fn, (ST Fn)⊥) = (⊥(I−n(F+)),
(⊥(I−n(F+)))⊥) is a perfect and closed cotorsion pair. By Propositions 3.4 and
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3.11, it is easy to get that ST Fn is resolving, thus (ST Fn, (ST Fn)⊥) is hered-
itary. �
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