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A SIMPLE PROOF OF THE SION MINIMAX THEOREM

Sehie Park

Abstract. For convex subsets X of a topological vector space E, we
show that a KKM principle implies a Fan-Browder type fixed point theo-
rem and that this theorem implies generalized forms of the Sion minimax
theorem.

The von Neumann-Sion minimax theorem is fundamental in convex analysis
and in game theory. von Neumann [8] proved his theorem for simplexes by
reducing the problem to the 1-dimensional cases. Sion’s generalization [7] was
proved by the aid of Helly’s theorem and the KKM theorem due to Knaster,
Kuratowski, and Mazurkiewicz [5]. In a recent paper, Kindler [4] proved Sion’s
theorem by applying the 1-dimensional KKM theorem (i.e., every interval in
R is connected), the 1-dimensional Helly theorem (i.e., any family of pairwise
intersecting compact intervals in R has nonempty intersection), and Zorn’s
lemma (or other method).

In this short note, for convex subsets X of a topological vector space E, we
show that a KKM principle implies a Fan-Browder type fixed point theorem
and that this theorem implies a generalized form of the Sion minimax theorem.

Definition. If a multimap G : X ( X satisfies

coA ⊂ G(A) :=
⋃

y∈A

G(y) for all finite subset A of X,

then G is called a KKM map.

Definition. A multimap T : X ( X is called a Fan-Browder map provided
that

(a) for each x ∈ X, T (x) is convex; and
(b) X =

⋃
y∈N IntT−(y) for some finite subset N of X.

Here, Int denotes the interior with respect to X and, for each y ∈ X,
T−(y) := {x ∈ X | y ∈ T (x)}.
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For a convex subset X of a topological vector space E, let us consider the
following statements:

(A) The KKM principle. For any closed-valued KKM map G : X ( X,
the family {G(x)}x∈X has the finite intersection property.

(B) The Fan-Browder fixed point theorem. Any Fan-Browder map T :
X ( X has a fixed point x0 ∈ X; that is, x0 ∈ T (x0).

Recall that (A) originates from the Knaster-Kuratowski-Mazurkiewicz the-
orem [5] and holds by Fan’s lemma [3], and (B) from Fan [3] and Browder
[1].

Theorem 1. The statement (A) implies (B).

Proof. Define a map G : X ( X by G(x) := X \ IntT−(x) for each x ∈ X.
Then each G(x) is (relatively) closed, and

⋂

y∈N

G(y) = X \
⋃

y∈N

IntT−(y) = X \X = ∅

by (b). Therefore, the family {G(x)}x∈X does not have the finite intersection
property, and hence, G is not a KKM map by (A). Thus, there exists a finite
subset A of X such that co A 6⊂ G(A) =

⋃{X \ IntT−(y) | y ∈ A}. Hence,
there exists an x0 ∈ co A such that x0 ∈ IntT−(y) ⊂ T−(y) for all y ∈ A; that
is, A ⊂ T (x0). Therefore, x0 ∈ co A ⊂ T (x0) by (a). �

Theorem 2. Let X and Y be nonempty convex subsets of two topological vector
spaces, and f, s, t, g : X × Y → R ∪ {+∞} be four functions,

µ := inf
y∈Y

sup
x∈X

f(x, y) and ν := sup
x∈X

inf
y∈Y

g(x, y).

Suppose that
(2.1) f(x, y) ≤ s(x, y) ≤ t(x, y) ≤ g(x, y) for each (x, y) ∈ X × Y ;
(2.2) for each r < µ and y ∈ Y , {x ∈ X | s(x, y) > r} is convex; for each

r > ν and x ∈ X, {y ∈ Y | t(x, y) < r} is convex;
(2.3) for each r > ν, there exists a finite subset {xi}m

i=1 of X such that
Y =

⋃m
i=1Int {y ∈ Y | f(xi, y) > r}; and

(2.4) for each r < µ, there exists a finite subset {yj}n
j=1 of Y such that

X =
⋃n

j=1Int {x ∈ X | g(x, yj) < r}.
Then we have µ ≤ ν, that is,

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

g(x, y).

Proof. Suppose that there exists a real c such that

ν := sup
x

inf
y

g(x, y) < c < inf
y

sup
x

f(x, y) =: µ.

Define a map T : X × Y ( X × Y by

T (x, y) := {x̄ ∈ X | s(x̄, y) > c} × {ȳ ∈ Y | t(x, ȳ) < c}
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for each (x, y) ∈ X × Y . Then each T (x, y) is convex by (2.2). Moreover, for
each (x̄, ȳ) ∈ X × Y , we have

T−(x̄, ȳ) = {x ∈ X | s(x, ȳ) > c} × {y ∈ Y | t(x̄, y) < c}
⊃ {x ∈ X | f(x, ȳ) > c} × {y ∈ Y | g(x̄, y) < c}
⊃ Int{x ∈ X | f(x, ȳ) > c} × Int{y ∈ Y | g(x̄, y) < c}.

Therefore, by (2.3) and (2.4), X × Y is covered by

{IntT−(xi, yj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Hence, T is a Fan-Browder map. Since X×Y is a convex subset of a topological
vector space, (A) and (B) hold. Therefore, by (B), we have an (x0, y0) ∈
X × Y such that (x0, y0) ∈ T (x0, y0). Therefore, t(x0, y0) < c < s(x0, y0), a
contradiction. �

Recall that a extended real-valued function f : X → R on a topological
space X is lower [resp., upper] semicontinuous (l.s.c.) [resp., u.s.c.] if {x ∈
X | f(x) > r} [resp., {x ∈ X | f(x) < r}] is open for each r ∈ R.

For a convex set X, a extended real-valued function f : X → R is said to be
quasiconcave [resp., quasiconvex] if {x ∈ E | f(x) > r} [resp., {x ∈ E | f(x) <
r}] is convex for each r ∈ R.

Theorem 3. Let X and Y be compact convex subsets of topological vector
spaces, and f, s, t, g : X × Y → R ∪ {+∞} be functions satisfying

(3.1) f(x, y) ≤ s(x, y) ≤ t(x, y) ≤ g(x, y) for each (x, y) ∈ X × Y ;
(3.2) for each x ∈ X, f(x, ·) is l.s.c. and t(x, ·) is quasiconvex on Y ; and
(3.3) for each y ∈ Y, s(·, y) is quasiconcave and g(·, y) is u.s.c. on X.

Then we have
min
y∈Y

sup
x∈X

f(x, y) ≤ max
x∈X

inf
y∈Y

g(x, y).

Proof. Note that y 7→ supx∈X f(x, y) is l.s.c. on Y and x 7→ infy∈Y g(x, y) is
u.s.c. on X. Therefore, the both sides of the inequality exist. Then all the
requirements of Theorem 2 are satisfied. �

For f = s = t = g in Theorem 3, we have the following Sion minimax
theorem [7]:

Theorem 4. Let X and Y be compact convex subsets of topological vector
spaces and f : X × Y → R a real function such that

(4.1) for each x ∈ X, f(x, ·) is l.s.c. and quasiconvex on Y ; and
(4.2) for each y ∈ Y, f(·, y) is u.s.c. and quasiconcave on X.

Then
(i) f has a saddle point (x0, y0) ∈ X × Y ; and
(ii) we have

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).
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Proof. It is well known and easy to see that the minima and maxima in
Theorem 4 exist under our topological assumptions. Hence, there exists an
(x0, y0) ∈ X × Y such that

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

f(x, y0) ≥ f(x0, y0) ≥ min
y∈Y

f(x0, y) = max
x∈X

min
y∈Y

f(x, y).

Moreover, all the requirements of Theorem 3 with f = g are satisfied. There-
fore, the ≥’s in the above should be = and we have the conclusion. �
Remark 1. von Neumann [8] obtained Theorem 4 when X and Y are subsets
of Euclidean spaces and f is continuous.

2. (A) also holds for open-valued KKM maps, and (B) also holds when T−

has closed values. In this case, (A) implies (B) also.
3. For other simple proof of the Sion minimax theorem, see [4].
4. Theorem 2 is motivated from [2, Theorem 8], which is for f = s = t = g.
5. For the history of the KKM theory, see [6].
6. All the results in this paper can be extended to abstract convex spaces

without assuming any linear structure.
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