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ON STRONGLY θ-e-CONTINUOUS FUNCTIONS

Murad Özkoç and Gülhan Aslim

Abstract. A new class of generalized open sets in a topological space,
called e-open sets, is introduced and some properties are obtained by
Ekici [6]. This class is contained in the class of δ-semi-preopen (or
δ-β-open) sets and weaker than both δ-semiopen sets and δ-preopen sets.
In order to investigate some different properties we introduce two strong
form of e-open sets called e-regular sets and e-θ-open sets. By means of
e-θ-open sets we also introduce a new class of functions called strongly
θ-e-continuous functions which is a generalization of θ-precontinuous func-
tions. Some characterizations concerning strongly θ-e-continuous func-
tions are obtained.

1. Introduction

The concept of strong θ-continuity which is stronger than δ-continuity [14]
is introduced by Noiri [14]. Some properties of strongly θ-continuous functions
defined by θ-open sets are studied by Long and Herrington [11]. Recently,
four generalizations of strong θ-continuity are obtained by Jafari and Noiri [9],
Noiri [15], Noiri and Popa [16] and Park [17]. In this paper, we introduce and
investigate some fundamental properties of strongly θ-e-continuous functions
defined via e-open sets introduced by Ekici [6] in a topological space. It turns
out that strong θ-e-continuity is stronger than strong θ-β-continuity [16] and
weaker than strong θ-precontinuity [15].

2. Preliminaries

Throughout the present paper, spaces X and Y always mean topological
spaces. Let X be a topological space and A a subset of X. The closure of A
and the interior of A are denoted by cl(A) and int(A), respectively. A subset
A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A =
cl(int(A))). The δ-interior [22] of a subset A of X is the union of all regu-
lar open sets of X contained in A and is denoted by intδ(A). The subset A
is called δ-open [22] if A = intδ(A), i.e., a set is δ-open if it is the union of

Received April 9, 2009.
2000 Mathematics Subject Classification. Primary 54C08, 54C10.
Key words and phrases. e-open sets, e-θ-closed sets, e-regular sets, strongly θ-e-continuous

functions.

c©2010 The Korean Mathematical Society

1025
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regular open sets. The complement of a δ-open set is called δ-closed. Al-
ternatively, a set A ⊂ (X, τ) is called δ-closed [22] if A = clδ(A), where
clδ(A) = {x|x ∈ U ∈ τ ⇒ int(cl(A)) ∩A 6= ∅} . The family of all δ-open (resp.
δ-closed) sets in X is denoted by δO(X) (resp. δC(X)).

The e-interior [6] of a subset A of X is the union of all e-open sets of X
contained in A and is denoted by e-int(A). The e-closure [6] of a subset A of
X is the intersection of all e-closed sets of X containing A and is denoted by
e-cl(A).

A subset A of X is called semiopen [10] (resp. α-open [13], δ-semiopen [18],
preopen [12], δ-preopen [19], e-open [6], semi-preopen [2] (or β-open [1]), δ-semi-
preopen (or δ-β-open [8]) if A ⊂ cl(int(A)) (resp. A ⊂ int(cl(int(A))), A ⊂
cl(intδ(A)), A ⊂ int(cl(A)), A ⊂ int(clδ(A)), A ⊂ int(clδ(A)) ∪ cl(intδ(A)),
A ⊂ cl(int(cl(A))), A ⊂ cl(int(clδ(A)))) and the complement of a semiopen
(resp. α-open, δ-semiopen, preopen, δ-preopen, semi-preopen, δ-semi-preopen)
set are called semiclosed (resp. α-closed, δ-semiclosed, preclosed, δ-preclosed,
semi-preclosed, δ-semi-preclosed). A subset A is called δ-semi regular [18] (resp.
δ-pre-regular [19]) if it is δ-semiopen and δ-semiclosed (resp. δ-preopen and
δ-preclosed). The intersection of all semiclosed (resp. preclosed, δ-semiclosed,
δ-preclosed) sets of X containing A is called the semi-closure [5] (resp. pre-clos-
ure [12], δ-semi-closure [18], δ-pre-closure [19]) of A and is denoted by scl(A)
(resp. pcl(A), δ-scl(A), δ-pcl(A)). Dually, the semi-interior (resp. pre-interior,
δ-semi-interior, δ-pre-interior) of A is defined to be the union of all semiopen
(resp. preopen, δ-semiopen, δ-preopen) sets contained in A and is denoted
by sint(A) (resp. pint(A), δ-sint(A), δ-pint(A)). The family of all δ-semiopen
(resp. δ-preopen, δ-semi-preopen (or δ-β-open)) sets in X is denoted by δSO(X)
(resp. δPO(X), δβO(X)).

Lemma 2.1 ([18], [19]). Let A be a subset of a space X. Then the following
hold:

(a) δ-scl(A) = A ∪ int(clδ(A)), δ-sint(A) = A ∩ cl(intδ(A)),
(b) δ-pcl(A) = A ∪ cl(intδ(A)), δ-pint(A) = A ∩ int(clδ(A)).

Lemma 2.2 ([18], [19]). Let A be a subset of a space X. Then the following
hold:

(a) δ-scl(δ-sint(A)) = δ-sint(A) ∪ int(cl(intδ(A))),
(b) δ-pcl(δ-pint(A)) = δ-pint(A) ∪ cl(intδ(A)).

Lemma 2.3 ([22]). Let A and B be any subsets of a space X. Then the fol-
lowing hold:

(a) A ∈ δO(X) if and only if A = intδ(A),
(b) clδ(X\A) = X\intδ(A),
(c) intδ(A ∩B) = intδ(A) ∩ intδ(B),
(d) If Aα is δ-open in X for each α ∈ Λ, then ∪α∈ΛAα is δ-open in X.

The family of all e-open (e-closed) sets in X will be denoted by eO(X) (eC
(X)), respectively.
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3. e-regular sets and e-θ-open sets

In this section we introduce some strong types of e-open sets, called e-regular
sets and e-θ-open sets. Using these sets we give a characterization of e-open
sets and some properties.

Definition 3.1. A subset A of a topological space X is e-regular if it is
e-open and e-closed. The family of all e-regular sets in X will be denoted by
eR(X). The family of all e-regular sets which contain x in X will be denoted
by eR(X,x).

Theorem 3.1. For a subset A of a topological space X, the following properties
hold:

(a) A ∈ eO(X) if and only if e-cl(A) ∈ eR(X),
(b) A ∈ eC(X) if and only if e-int(A) ∈ eR(X).

Proof. We will prove only the first statement. The second one can be proved
similarly.

Necessity. Let A ∈ eO(X).

A ∈ eO(X) ⇒ A ⊂ int(clδ(A)) ∪ cl(intδ(A))

⇒ e-cl(A) ⊂ e-cl(int(clδ(A)) ∪ cl(intδ(A)))

⇒ e-cl(A) ⊂ δ-scl(int(clδ(A)) ∪ cl(intδ(A)))∩
δ-pcl(int(clδ(A)) ∪ cl(intδ(A)))

From Lemma 2.1 we have

e-cl(A)

⊂ [(int(clδ(A)) ∪ cl(intδ(A))) ∪ int(clδ(int(clδ(A)) ∪ cl(intδ(A))))]∩
[(int(clδ(A)) ∪ cl(intδ(A))) ∪ cl(intδ(int(clδ(A)) ∪ cl(intδ(A))))]

⊂ [(int(clδ(A)) ∪ cl(intδ(A))) ∪ (int(clδ(int(clδ(A)))) ∪ clδ(cl(intδ(A))))]∩
[(int(clδ(A)) ∪ cl(intδ(A))) ∪ (cl(int(clδ(A)) ∪ cl(intδ(A))))]

⊂ [(int(clδ(A)) ∪ cl(intδ(A))) ∪ (int(clδ(A) ∪ clδ(clδ(intδ(A)))))]∩
[(int(clδ(A)) ∪ cl(intδ(A))) ∪ (cl(int(clδ(A))) ∪ cl(cl(intδ(A))))]

⊂ [(int(clδ(A)) ∪ cl(intδ(A))) ∪ (int(clδ(A)) ∪ clδ(intδ(A)))]∩
[(int(clδ(A)) ∪ cl(intδ(A))) ∪ (cl(int(clδ(A))) ∪ cl(intδ(A)))]

⊂ [(int(clδ(A)) ∪ cl(intδ(A))) ∪ (int(clδ(A)) ∪ cl(intδ(A)))]∩
[cl(int(clδ(A))) ∪ cl(intδ(A))]

⊂ [(int(clδ(A)) ∪ cl(intδ(A)))] ∩ [cl(int(clδ(A))) ∪ cl(intδ(A))]

⊂ int(clδ(A)) ∪ cl(intδ(A)).

Since A ⊂ e-cl(A), we have e-cl(A) ⊂ int(clδ(e-cl(A)))∪ cl(intδ(e-cl(A))). This
shows that e-cl(A) is an e-open set. On the other hand, e-cl(A) is always an
e-closed set. Therefore e-cl(A) is an e-regular set.
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Sufficiency. This follows from [6, Theorem 2.15]. �

Theorem 3.2. For a subset A of a topological space X, the following are
equivalent:

(a) A ∈ eR(X),
(b) A = e-cl(e-int(A)),
(c) A = e-int(e-cl(A)).

Proof. The proofs of the implications (a) ⇒(b) and (a)⇒(c) are obvious.
(b)⇒ (a): Since e-cl(A) is e-closed, by Theorem 3.1(a) we have e-int(e-cl(A))

∈ eR(X) and A ∈ eR(X).
(c)⇒ (a): Since e-int(A) is e-open, by Theorem 3.1(b) we have e-cl(e-int(A))

∈ eR(X) and A ∈ eR(X). �

Definition 3.2. A point x of X is called an e-θ-cluster point of A if e-cl(U)∩
A 6= ∅ for every U ∈ eO(X,x). The set of all e-θ-cluster points of A is called
e-θ-closure of A and is denoted by e-clθ(A). A subset A is said to be e-θ-closed
if A = e-clθ(A). The complement of an e-θ-closed set is said to be e-θ-open.

Theorem 3.3. For any subset A of a space X, we have

e-clθ(A) = ∩{V |A ⊂ V and V is e-θ-closed}
= ∩{V |A ⊂ V and V ∈ eR(X)} .

Proof. We prove only the first equality since the other is similarly proved.
First, suppose that x /∈ e-clθ(A). Then there exists V ∈ eO(X, x) such that
e-cl(V )∩A = ∅. By Theorem 3.1, X\e-cl(V ) is e-regular and hence X\e-cl(V )
is an e-θ-closed set containing A and x /∈ X\e-cl(V ). Therefore, we have x /∈
∩{V |A ⊂ V and V is e-θ-closed} . Conversely, suppose that x /∈ ∩{V |A ⊂ V
and V is e-θ-closed}. There exists an e-θ-closed set V such that A ⊂ V and
x /∈ V. There exists U ∈ eO(X) such that x ∈ U ⊂ e-cl(U) ⊂ X\V. Therefore,
we have e-cl(U) ∩A ⊂ e-cl(U) ∩ V = ∅. This shows that x /∈ e-clθ(A). �

Theorem 3.4. Let A and B be any subsets of a space X. Then the following
properties hold:

(a) x ∈ e-clθ(A) if and only if U ∩A 6= ∅ for each U ∈ eR(X, x),
(b) If A ⊂ B, then e-clθ(A) ⊂ e-clθ(B),
(c) e-clθ(e-clθ(A)) = e-clθ(A),
(d) If Aα is e-θ-closed in X for each α ∈ Λ, then ∩α∈ΛAα is e-θ-closed in

X.

Proof. The proofs of (a) and (b) are obvious.
(c) Generally we have e-clθ(A) ⊂ e-clθ(e-clθ(A)). Suppose that x /∈ e-clθ(A).

There exists U ∈ eR(X, x) such that U ∩ A = ∅. Since U ∈ eR(X), we have
e-clθ(A) ∩ U = ∅. This shows that x /∈ e-clθ(e-clθ(A)). Therefore, we obtain
e-clθ(e-clθ(A)) ⊂ e-clθ(A).
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(d) Let Aα be e-θ-closed in X for each α ∈ Λ. For each α ∈ Λ, Aα =
e-clθ(Aα). Hence we have

e-clθ(∩α∈ΛAα) ⊂ ∩α∈Λe-clθ(Aα) = ∩α∈ΛAα ⊂ e-clθ(∩α∈ΛAα).

Therefore, we obtain e-clθ(∩α∈ΛAα) = ∩α∈ΛAα. This shows that ∩α∈ΛAα is
e-θ-closed. �

Remark 3.5. The union of two e-θ-closed sets is not necessarily e-θ-closed as
shown by the following example.

Example 3.6. Let X = {a, b, c} and τ = {∅, X, {a} , {b} , {a, b}} . The subsets
{a} and {b} are e-θ-closed in (X, τ) but {a, b} is not e-θ-closed.

Corollary 3.7. Let A and Aα(α ∈ Λ) be any subsets of a space X. Then the
following properties hold:

(a) A is e-θ-open in X if and only if for each x ∈ A there exists U ∈ eR(X, x)
such that x ∈ U ⊂ A,

(b) e-clθ (A) is e-θ-closed,
(c) If Aα is e-θ-open in X for each α ∈ Λ, then ∪α∈ΛAα is e-θ-open in X.

Theorem 3.8. For a subset A of a space X, the following properties hold:
(a) If A ∈ eO(X), then e-cl(A) = e-clθ(A),
(b) A ∈ eR(X) if and only if A is e-θ-open and e-θ-closed.

Proof. (a) Generally we have e-cl(B) ⊂ e-clθ(B) for every subset B of X. Let
A ∈ eO(X) and suppose that x /∈ e-cl(A). Then there exists U ∈ eO(X,x) such
that U ∩ A = ∅. Since A ∈ eO(X), we have e-cl(U) ∩ A = ∅. This shows that
x /∈ e-clθ(A). Hence we obtain e-cl(A) = e-clθ(A).

(b) Let A ∈ eR(X). Then A ∈ eO(X) and by (a), A = e-cl(A) = e-clθ(A).
Therefore, A is e-θ-closed. Since X\A ∈ eR(X), by the argument above, X\A
is e-θ-closed and hence A is e-θ-open. The converse is obvious. �

Remark 3.9. It can be easily shown that e-regular ⇒ e-θ-open ⇒ e-open. But
the converses are not necessarily true as shown by the following examples.

Example 3.10. Let X = {a, b, c} and τ = {∅, X, {a} , {b} , {a, b}} . Then the
subset {a, b} is e-θ-open in X but not e-regular.

Example 3.11. Let X = {a, b, c, d, e} and τ = {∅, X, {a} , {c} , {a, c} , {c, d} ,
{a, c, d}}. Then the subset {a} is e-open in X but not e-θ-open.

4. Strongly θ-e-continuous functions and some properties

In this section, we introduce a new type of continuous functions and look
into some relations with other types.

Definition 4.1. A function f : X → Y is said to be strongly θ-e-continuous
(briefly, st.θ.e.c.) if for each x ∈ X and each open set V of Y containing f(x),
there exists an e-open set U of X containing x such that f(e-cl(U)) ⊂ V.
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Definition 4.2. A function f : X → Y is said to be
(a) strongly θ-continuous [14] if for each x ∈ X and each open set V of

Y containing f(x), there exists an open set U of X containing x such that
f(cl(U)) ⊂ V ;

(b) strongly θ-semicontinuous [9] if for each x ∈ X and each open set V of
Y containing f(x), there exists a semi-open set U of X containing x such that
f(scl(U)) ⊂ V ;

(c) strongly θ-precontinuous [15] if for each x ∈ X and each open set V of
Y containing f(x), there exists a preopen set U of X containing x such that
f(pcl(U)) ⊂ V ;

(d) strongly θ-β-continuous [16] if for each x ∈ X and each open set V of Y
containing f(x), there exists a semi-preopen set U of X containing x such that
f(spcl(U)) ⊂ V ;

(e) strongly θ-b-continuous [17] if for each x ∈ X and each open set V of
Y containing f(x), there exists a b-open set U of X containing x such that
f(bcl(U)) ⊂ V ;

(f) b-continuous [7] if for each x ∈ X and each open set V of Y containing
f(x), there exists U ∈ BO (X,x) such that f(U) ⊂ V.

Remark 4.1. From Definitions 4.1 and 4.2, we have the following diagram:

st. θ-precon. → st. θ-e-con.
↗ ↘ ↘

st. θ-con. st. θ-b-con. → st. θ-β-con.
↘ ↗

st. θ-semicon.

However, none of these implications is reversible as shown by the following
examples.

Example 4.2. Let X = {a, b, c, d, e} and τ = {∅, X, {a} , {c} , {a, c} , {c, d} ,
{a, c, d}} and σ = {∅, X, {b, c, d}} . Then the identity function f : (X, τ) →
(X, σ) is both b-continuous and strongly θ-b-continuous but not strongly θ-e-co-
ntinuous.

Example 4.3. Let X = {a, b, c, d, e} and τ = {∅, X, {a} , {c} , {a, c} , {c, d} ,
{a, c, d}} and σ = {∅, X, {d}} . Then the identity function f : (X, τ) → (X,σ)
is strongly θ-e-continuous but not strongly θ-b-continuous.

Example 4.4. Let τ be the usual topology for R and σ = {[0, 1] ∪ ((1, 2) ∩Q),
∅, R} , where Q denotes the set of rational numbers. Then the identity function
f : (R, τ) → (R, σ) is strongly θ-e-continuous but neither strongly θ-preconti-
nuous nor strongly θ-semicontinuous.

Example 4.5. Let τ be the usual topology for R and σ = {∅,R, [0, 1) ∩Q} .
Then the identity function f : (R, τ) → (R, σ) is strongly θ-β-continuous but
not strongly θ-e-continuous.
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Theorem 4.6. For a function f : X → Y, the following are equivalent:
(a) f is strongly θ-e-continuous,
(b) For each x ∈ X and each open set V of Y containing f(x), there exists

U ∈ eR(X, x) such that f(U) ⊂ V,
(c) f−1 (V ) is e-θ-open in X for each open set V of Y,
(d) f−1 (F ) is e-θ-closed in X for each closed set F of Y,
(e) f(e-clθ(A)) ⊂ cl(f(A)) for each subset A of X,
(f) e-clθ(f−1(B)) ⊂ f−1(cl(B)) for each subset B of Y.

Proof. (a) ⇒ (b). It follows from Theorem 3.1.
(b) ⇒ (c). Let V be any open set of Y and x ∈ f−1 (V ) . There exists

U ∈ eR(X, x) such that f(U) ⊂ V. Therefore, we have x ∈ U ⊂ f−1(V ). Hence
by Corollary 3.7.(a), f−1(V ) is e-θ-open in X.

(c) ⇒ (d). This is obvious.
(d) ⇒ (e). Let A be any subset of X. Since cl(f(A)) is closed in Y, by (d)

f−1(cl(f(A))) is e-θ-closed and we have

e-clθ(A) ⊂ e-clθ(f−1(f(A))) ⊂ e-clθ(f−1(cl(f(A)))) = f−1(cl(f(A))).

Therefore, we obtain f(e-clθ(A)) ⊂ cl(f(A)).
(e) ⇒ (f). Let B be any subset of Y. By (e), we obtain f(e-clθ(f−1(B))) ⊂

cl(f(f−1(B))) ⊂ cl(B) and hence e-clθ(f−1(B)) ⊂ f−1(cl(B)).
(f) ⇒ (a). Let x ∈ X and V be any open set of Y containing f(x). Since

Y \V is closed in Y, we have e-clθ(f−1(Y \V )) ⊂ f−1(cl(Y \V )) = f−1(Y \V ).
Therefore, f−1(Y \V ) is e-θ-closed in X and f−1(V ) is an e-θ-open set con-
taining x. There exists U ∈ eO(X,x) such that e-cl(U) ⊂ f−1(V ) and hence
f(e-cl(U)) ⊂ V. This shows that f is st.θ.e.c. �
Theorem 4.7. Let Y be a regular space. Then f : X → Y is st.θ.e.c. if and
only if f is e-continuous.

Proof. Let x ∈ X and V an open set of Y containing f(x). Since Y is reg-
ular, there exists an open set W such that f(x) ∈ W ⊂ cl(W ) ⊂ V. If f
is e-continuous, there exists U ∈ eO(X, x) such that f(U) ⊂ W. We shall
show that f(e-cl(U)) ⊂ cl(W ). Suppose that y /∈ cl(W ). There exists an
open set G containing y such that G ∩ W = ∅. Since f is e-continuous,
f−1(G) ∈ eO(X) and f−1(G) ∩ U = ∅ and hence f−1(G) ∩ e-cl(U) = ∅.
Therefore, we obtain G∩ f(e-cl(U)) = ∅ and y /∈ f(e-cl(U)). Consequently, we
have f(e-cl(U)) ⊂ cl(W ) ⊂ V. The converse is obvious. �
Definition 4.3. A space X is said to be e-regular if for each closed set F and
each point x ∈ X\F, there exist disjoint e-open sets U and V such that x ∈ U
and F ⊂ V.

Lemma 4.8. For a space X the following are equivalent:
(a) X is e-regular;
(b) For each point x ∈ X and for each open set U of X containing x, there

exists V ∈ eO(X) such that x ∈ V ⊂ e-cl(V ) ⊂ U ;
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(c) For each subset A of X and each closed set F such that A∩F = ∅, there
exist disjoint U, V ∈ eO(X) such that A ∩ U 6= ∅ and F ⊂ V ;

(d) For each closed set F of X, F = ∩{e-cl(V )|F ⊂ V, V ∈ eO(X)} .

Theorem 4.9. A continuous function f : X → Y is st.θ.e.c. if and only if X
is e-regular.

Proof. Necessity. Let f : X → X be the identity function. Then f is continuous
and st.θ.e.c. by our hypothesis. For any open set U of X and any point x ∈ U,
we have f(x) = x ∈ U and there exists V ∈ eO(X, x) such that f(e-cl(V )) ⊂ U.
Therefore, we have x ∈ V ⊂ e-cl(V ) ⊂ U. It follows from Lemma 4.8 that X is
e-regular.

Sufficiency. Suppose that f : X → Y is continuous and X is e-regular. For
any x ∈ X and open set V containing f(x), f−1(V ) is an open set containing
x. Since X is e-regular, there exists U ∈ eO(X) such that x ∈ U ⊂ e-cl(U) ⊂
f−1(V ). Therefore, we have f(e-cl(U)) ⊂ V. This shows that f is st.θ.e.c. �
Theorem 4.10. Let f : X → Y be a function and g : X → X×Y be the graph
function of f. If g is st.θ.e.c., then f is st.θ.e.c. and X is e-regular.

Proof. First, we show that f is st.θ.e.c. Let x ∈ X and V an open set of Y
containing f(x). Then X × V is an open set of X × Y containing g(x). Since g
is st.θ.e.c., there exists U ∈ eO(X, x) such that g(e-cl(U)) ⊂ X ×V. Therefore,
we obtain f(e-cl(U)) ⊂ V. Next, we show that X is e-regular. Let U be any
open set of X and x ∈ U. Since g(x) ∈ U × Y and U × Y is open in X × Y,
there exists G ∈ eO(X, x) such that g(e-cl(G)) ⊂ U × Y. Therefore, we obtain
x ∈ G ⊂ e-cl(G) ⊂ U and hence X is e-regular. �
Theorem 4.11. Let f : X → Y and g : Y → Z be functions. If f is st.θ.e.c.
and g is continuous, then the composition g ◦ f : X → Z is st.θ.e.c.

Proof. It is clear from Theorem 4.6. �
We recall that a space X is said to be submaximal [20] if each dense subset

of X is open in X. It is shown in [20] that a space X is submaximal if and
only if every preopen set of X is open. A space X is said to be extremally
disconnected [4] if the closure of each open set of X is open. Note that an
extremally disconnected space is exactly the space where every semiopen set is
α-open.

Theorem 4.12. Let X be a submaximal extremally disconnected space. Then
the following properties are equivalent for a function f : X → Y .

(a) f is strongly θ-continuous;
(b) f is strongly θ-semicontinuous;
(c) f is strongly θ-precontinuous;
(d) f is strongly θ-b-continuous;
(e) f is strongly θ-e-continuous;
(f) f is strongly θ-β-continuous.
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Proof. It follows from the fact that if X is submaximal extremally disconnected,
then open set, preopen set, semiopen set, b-open set, e-open set and semi-
preopen set are equivalent. �

5. Separation axioms

We introduce a new type of space called e-T2 and some properties between
strongly θ-e-continuous and e-T2 are obtained.

Definition 5.1. A space X is said to be e-T2 if for each pair of distinct points
x and y in X, there exist U ∈ eO(X, x) and V ∈ eO(X, y) such that U ∩V = ∅.
Lemma 5.1. A space X is e-T2 if and only if for each pair of distinct points
x and y in X, there exist U ∈ eO(X, x) and V ∈ eO(X, y) such that e-cl(U) ∩
e-cl(V ) = ∅.
Theorem 5.2. If f : X → Y is a st.θ.e.c. injection and Y is T0, then X is
e-T2.

Proof. For any distinct points x and y of X, by hypothesis f(x) 6= f(y) and
there exists either an open set V containing f(x) not containing f(y) or an
open set W containing f(y) not containing f(x). If the first case holds, then
there exists U ∈ eO(X, x) such that f(e-cl(U)) ⊂ V. Thus, we obtain f(y) /∈
f(e-cl(U)) and hence X\e-cl(U) ∈ eO(X, y). If the second case holds, then we
obtain a similar result. Thus, X is e-T2. �

Theorem 5.3. If f : X → Y is a st.θ.e.c. function and Y is Hausdorff, then
the subset A = { (x, y)| f(x) = f(y)} is e-θ-closed in X ×X.

Proof. It is clear that f(x) 6= f(y) for each (x, y) /∈ A. Since Y is Hausdorff,
there exist open sets V and W of Y containing f(x) and f(y), respectively,
such that V ∩W = ∅. Since f is st.θ.e.c., there exist U ∈ eO(X, x) and G ∈
eO(X, y) such that f(e-cl(U)) ⊂ V and f(e-cl(G)) ⊂ W. Put D = f(e-cl(U))×
f(e-cl(G)). It follows that (x, y) ∈ D ∈ eR(X×X) and D∩A = ∅. This means
that e-clθ(A) ⊂ A and thus, A is e-θ-closed in X ×X. �

We recall that for a function f : X → Y, the subset { (x, f(x))|x ∈ X} of
X × Y is called the graph of f and is denoted by G(f).

Definition 5.2. The graph G(f) of a function f : X → Y is said to be strongly
e-closed if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ eO(X, x) and an
open set V in Y containing y such that (e-cl(U)× V ) ∩G(f) = ∅.
Lemma 5.4. The graph G(f) of a function f : X → Y is strongly e-closed if
and only if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ eO(X,x) and an
open set V in Y containing y such that f(e-cl(U)) ∩ V = ∅.
Theorem 5.5. If f : X → Y is st.θ.e.c. and Y is Hausdorff, then G(f) is
strongly e-closed in X × Y.
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Proof. It is clear that f(x) 6= y for each (x, y) ∈ (X × Y )\G(f). Since Y
is Hausdorff, there exist open sets V and W in Y containing f(x) and y,
respectively, such that V ∩W = ∅. Since f is st.θ.e.c., there exists U ∈ eO(X, x)
such that f(e-cl(U)) ⊂ V. Thus, f(e-cl(U)) ∩W = ∅ and then by Lemma 5.4,
G(f) is strongly e-closed in X × Y. �

6. Covering properties

Definition 6.1. A space X is said to be
(a) e-closed if every cover of X by e-open sets has a finite subcover whose

preclosures cover X;
(b) countably e-closed if every countable cover of X by e-open sets has a

finite subcover whose preclosures cover X.

A subset A of a space X is said to be e-closed relative to X if for every cover
{Vα : α ∈ Λ} of A by e-open sets of X, there exists a finite subset Λ0 of Λ such
that A ⊂ ∪{e-cl(Vα) : α ∈ Λ0}.
Theorem 6.1. If f : X → Y is a st.θ.e.c. function and A is e-closed relative
to X, then f(A) is a compact set of Y.

Proof. Let {Vα : α ∈ Λ} be a cover of f(A) by open sets of Y. For each point
x ∈ A, there exists α(x) ∈ Λ such that f(x) ∈ Vα(x). Since f is st.θ.e.c., there
exists Ux ∈ eO(X, x) such that f(e-cl(Ux)) ⊂ Vα(x). The family {Ux : x ∈ A}
is a cover of A by e-open sets of X and hence there exists a finite subset A0

of A such that A ⊂ ∪x∈A0e-cl(Ux). Therefore, we obtain f(A) ⊂ ∪x∈A0Vα(x).
This shows that f(A) is compact. �
Corollary 6.2. Let f : X → Y be a st.θ.e.c. surjection. Then the following
properties hold:

(a) If X is e-closed, then Y is compact,
(b)If X is countably e-closed, then Y is countably compact.

Theorem 6.3. If a function f : X → Y has a strongly e-closed graph, then
f(A) is closed in Y for each subset A which is e-closed relative to X.

Proof. Let A be e-closed relative to X and y ∈ Y \f(A). Then for each x ∈ A
we have (x, y) /∈ G(f) and by Lemma 5.4 there exist Ux ∈ eO(X,x) and an
open set Vx of Y containing y such that f(e-cl(Ux)) ∩ Vx = ∅. The family
{Ux : x ∈ A} is a cover of A by e-open sets of X. Since A is e-closed relative
to X, there exists a finite subset A0 of A such that A ⊂ ∪{e-cl(Ux) : x ∈ A0}.
Put V = ∩{Vx : x ∈ A0}. Then V is an open set containing y and f(A) ∩ V ⊂
[∪x∈A0f(e-cl(Ux))] ∩ V ⊂ ∪x∈A0 [f(e-cl(Ux)) ∩ Vx] = ∅. Therefore, we have
y /∈ cl(f(A)) and hence f(A) is closed in Y. �
Theorem 6.4. Let X be a submaximal extremally disconnected space. If a
function f : X → Y has a strongly e-closed graph, then f−1(A) is θ-closed in
X for each compact set A of Y.
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Proof. Let A be a compact set of Y and x /∈ f−1(A). Then for each y ∈ A
we have (x, y) /∈ G(f) and by Lemma 5.4 there exist Uy ∈ eO(X, x) and an
open set Vy of Y containing y such that f(e-cl(Uy)) ∩ Vy = ∅. The family
{Vy : y ∈ A} is an open cover of A and there exists a finite subset A0 of A such
that A ⊂ ∪y∈A0Vy. Since X is submaximal extremally disconnected, each Uy

is open in X and e-cl(Uy) = cl(Uy). Set U = ∩y∈A0Uy, then U is an open set
containing x and

f(cl(U)) ∩A ⊂ ∪x∈A0 [f(cl(U)) ∩ Vy] ⊂ ∪x∈A0 [f(e-cl(Uy)) ∩ Vy] = ∅.
Therefore, we have cl(U)∩ f−1(A) = ∅ and hence x /∈ clθ(f−1(A)). This shows
that f−1(A) is θ-closed in X. �

Corollary 6.5. Let X be a submaximal extremally disconnected space and Y be
a compact Hausdorff space. For a function f : X → Y, the following properties
are equivalent:

(a) f is st.θ.e.c.,
(b) G(f) is strongly e-closed in X × Y,
(c) f is strongly θ-continuous,
(d) f is continuous,
(e) f is e-continuous.

Proof. (a) ⇒ (b). It follows from Theorem 5.5.
(b) ⇒ (c). It follows from Theorem 6.4.
(c) ⇒ (d) ⇒ (e). These are obvious.
(e) ⇒ (a). Since Y is regular, it follows from Theorem 4.7. �
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