Bull. Korean Math. Soc. **47** (2010), No. 5, pp. 1025–1036 DOI 10.4134/BKMS.2010.47.5.1025

ON STRONGLY θ -e-CONTINUOUS FUNCTIONS

Murad Özkoç and Gülhan Aslim

ABSTRACT. A new class of generalized open sets in a topological space, called *e*-open sets, is introduced and some properties are obtained by Ekici [6]. This class is contained in the class of δ -semi-preopen (or δ - β -open) sets and weaker than both δ -semiopen sets and δ -preopen sets. In order to investigate some different properties we introduce two strong form of *e*-open sets called *e*-regular sets and *e*- θ -open sets. By means of *e*- θ -open sets we also introduce a new class of functions called strongly θ -*e*-continuous functions which is a generalization of θ -precontinuous functions. Some characterizations concerning strongly θ -*e*-continuous functions are obtained.

1. Introduction

The concept of strong θ -continuity which is stronger than δ -continuity [14] is introduced by Noiri [14]. Some properties of strongly θ -continuous functions defined by θ -open sets are studied by Long and Herrington [11]. Recently, four generalizations of strong θ -continuity are obtained by Jafari and Noiri [9], Noiri [15], Noiri and Popa [16] and Park [17]. In this paper, we introduce and investigate some fundamental properties of strongly θ -continuous functions defined via e-open sets introduced by Ekici [6] in a topological space. It turns out that strong θ -e-continuity is stronger than strong θ -forminuity [16] and weaker than strong θ -precontinuity [15].

2. Preliminaries

Throughout the present paper, spaces X and Y always mean topological spaces. Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))). The δ -interior [22] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $int_{\delta}(A)$. The subset A is called δ -open [22] if $A = int_{\delta}(A)$, i.e., a set is δ -open if it is the union of

O2010 The Korean Mathematical Society

Received April 9, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C08, 54C10.

Key words and phrases. e-open sets, e- θ -closed sets, e-regular sets, strongly θ -e-continuous functions.

regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set $A \subset (X, \tau)$ is called δ -closed [22] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x | x \in U \in \tau \Rightarrow int(cl(A)) \cap A \neq \emptyset\}$. The family of all δ -open (resp. δ -closed) sets in X is denoted by $\delta O(X)$ (resp. $\delta C(X)$).

The *e*-interior [6] of a subset A of X is the union of all *e*-open sets of X contained in A and is denoted by e-int(A). The *e*-closure [6] of a subset A of X is the intersection of all *e*-closed sets of X containing A and is denoted by e-cl(A).

A subset A of X is called semiopen [10] (resp. α -open [13], δ -semiopen [18], preopen [12], δ -preopen [19], e-open [6], semi-preopen [2] (or β -open [1]), δ -semipreopen (or δ - β -open [8]) if $A \subset cl(int(A))$ (resp. $A \subset int(cl(int(A))), A \subset$ $cl(int_{\delta}(A)), A \subset int(cl(A)), A \subset int(cl_{\delta}(A)), A \subset int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)),$ $A \subset cl(int(cl(A))), A \subset cl(int(cl_{\delta}(A))))$ and the complement of a semiopen (resp. α -open, δ -semiopen, preopen, δ -preopen, semi-preopen, δ -semi-preopen) set are called semiclosed (resp. α -closed, δ -semiclosed, preclosed, δ -preclosed, semi-preclosed, δ -semi-preclosed). A subset A is called δ -semi regular [18] (resp. δ -pre-regular [19]) if it is δ -semiopen and δ -semiclosed (resp. δ -preopen and δ -preclosed). The intersection of all semiclosed (resp. preclosed, δ -semiclosed, δ -preclosed) sets of X containing A is called the semi-closure [5] (resp. pre-closure [12], δ -semi-closure [18], δ -pre-closure [19]) of A and is denoted by scl(A)(resp. pcl(A), δ -scl(A), δ -pcl(A)). Dually, the semi-interior (resp. pre-interior, δ -semi-interior, δ -pre-interior) of A is defined to be the union of all semiopen (resp. preopen, δ -semiopen, δ -preopen) sets contained in A and is denoted by sint(A) (resp. pint(A), δ -sint(A), δ -pint(A)). The family of all δ -semiopen (resp. δ -preopen, δ -semi-preopen (or δ - β -open)) sets in X is denoted by $\delta SO(X)$ (resp. $\delta PO(X), \delta \beta O(X)$).

Lemma 2.1 ([18], [19]). Let A be a subset of a space X. Then the following hold:

- (a) δ -scl(A) = A \cup int(cl_{δ}(A)), δ -sint(A) = A \cap cl(int_{δ}(A)),
- (b) δ -pcl(A) = A \cup cl(int_{δ}(A)), δ -pint(A) = A \cap int(cl_{δ}(A)).

Lemma 2.2 ([18], [19]). Let A be a subset of a space X. Then the following hold:

(a) δ -scl $(\delta$ -sint(A)) = δ -sint $(A) \cup$ int $(cl(int_{\delta}(A)))$,

(b) δ -pcl(δ -pint(A)) = δ -pint(A) \cup cl(int_{\delta}(A)).

Lemma 2.3 ([22]). Let A and B be any subsets of a space X. Then the following hold:

(a) $A \in \delta O(X)$ if and only if $A = int_{\delta}(A)$,

- (b) $cl_{\delta}(X \setminus A) = X \setminus int_{\delta}(A)$,
- (c) $int_{\delta}(A \cap B) = int_{\delta}(A) \cap int_{\delta}(B)$,

(d) If A_{α} is δ -open in X for each $\alpha \in \Lambda$, then $\cup_{\alpha \in \Lambda} A_{\alpha}$ is δ -open in X.

The family of all e-open (e-closed) sets in X will be denoted by eO(X) (eC (X)), respectively.

3. *e*-regular sets and *e*- θ -open sets

In this section we introduce some strong types of *e*-open sets, called *e*-regular sets and e- θ -open sets. Using these sets we give a characterization of *e*-open sets and some properties.

Definition 3.1. A subset A of a topological space X is e-regular if it is e-open and e-closed. The family of all e-regular sets in X will be denoted by eR(X). The family of all e-regular sets which contain x in X will be denoted by eR(X,x).

Theorem 3.1. For a subset A of a topological space X, the following properties hold:

(a) $A \in eO(X)$ if and only if $e - cl(A) \in eR(X)$,

(b) $A \in eC(X)$ if and only if e-int $(A) \in eR(X)$.

Proof. We will prove only the first statement. The second one can be proved similarly.

Necessity. Let $A \in eO(X)$.

$$\begin{split} A \in eO(X) \Rightarrow A \subset int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)) \\ \Rightarrow e - cl(A) \subset e - cl(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \\ \Rightarrow e - cl(A) \subset \delta - scl(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cap \\ \delta - pcl(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \end{split}$$

From Lemma 2.1 we have

$$\begin{split} e\text{-}cl(A) \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup int(cl_{\delta}(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))))] \cap \\ [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup cl(int_{\delta}(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (int(cl_{\delta}(int(cl_{\delta}(A)))) \cup cl_{\delta}(cl(int_{\delta}(A)))))] \cap \\ [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (cl(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (int(cl_{\delta}(A) \cup cl_{\delta}(cl_{\delta}(int_{\delta}(A)))))] \cap \\ [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (cl(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (int(cl_{\delta}(A)) \cup cl_{\delta}(int_{\delta}(A)))] \cap \\ [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))) \cup (int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A)))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A)))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A)))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A)))] \\ &\subset [(int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A)))] \\ &\subset [int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A)))] \\ &\subset [int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A))] \\ &\subset [int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))] \cap [cl(int(cl_{\delta}(A))) \cup cl(int_{\delta}(A))] \\ &\subset [int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))] \\$$

Since $A \subset e - cl(A)$, we have $e - cl(A) \subset int(cl_{\delta}(e - cl(A))) \cup cl(int_{\delta}(e - cl(A)))$. This shows that e - cl(A) is an *e*-open set. On the other hand, e - cl(A) is always an *e*-closed set. Therefore e - cl(A) is an *e*-regular set.

Sufficiency. This follows from [6, Theorem 2.15].

Theorem 3.2. For a subset A of a topological space X, the following are equivalent:

(a) $A \in eR(X)$,

(b) $A = e \cdot cl(e \cdot int(A)),$

(c) $A = e \operatorname{-int}(e \operatorname{-cl}(A)).$

Proof. The proofs of the implications (a) \Rightarrow (b) and (a) \Rightarrow (c) are obvious.

(b) \Rightarrow (a): Since e-cl(A) is e-closed, by Theorem 3.1(a) we have e-int(e- $cl(A)) \in eR(X)$ and $A \in eR(X)$.

(c) \Rightarrow (a): Since e-int(A) is e-open, by Theorem 3.1(b) we have e-cl(e-int(A)) $\in eR(X)$ and $A \in eR(X)$.

Definition 3.2. A point x of X is called an e- θ -cluster point of A if e- $cl(U) \cap A \neq \emptyset$ for every $U \in eO(X, x)$. The set of all e- θ -cluster points of A is called e- θ -closure of A and is denoted by e- $cl_{\theta}(A)$. A subset A is said to be e- θ -closed if A = e- $cl_{\theta}(A)$. The complement of an e- θ -closed set is said to be e- θ -open.

Theorem 3.3. For any subset A of a space X, we have

$$e - cl_{\theta}(A) = \cap \{ V | A \subset V \text{ and } V \text{ is } e - \theta - closed \}$$
$$= \cap \{ V | A \subset V \text{ and } V \in eR(X) \}.$$

Proof. We prove only the first equality since the other is similarly proved. First, suppose that $x \notin e\text{-}cl_{\theta}(A)$. Then there exists $V \in eO(X, x)$ such that $e\text{-}cl(V) \cap A = \emptyset$. By Theorem 3.1, $X \setminus e\text{-}cl(V)$ is e-regular and hence $X \setminus e\text{-}cl(V)$ is a - e-closed set containing A and $x \notin X \setminus e\text{-}cl(V)$. Therefore, we have $x \notin \cap \{V \mid A \subset V \text{ and } V \text{ is } e\text{-}e\text{-}closed\}$. Conversely, suppose that $x \notin \cap \{V \mid A \subset V \text{ and } V \text{ is } e\text{-}e\text{-}closed\}$. There exists an e-e-closed set V such that $A \subset V$ and $x \notin V$. There exists $U \in eO(X)$ such that $x \in U \subset e\text{-}cl(U) \subset X \setminus V$. Therefore, we have $e\text{-}cl(U) \cap A \subset e\text{-}cl(U) \cap V = \emptyset$. This shows that $x \notin e\text{-}cl_{\theta}(A)$.

Theorem 3.4. Let A and B be any subsets of a space X. Then the following properties hold:

(a) $x \in e - cl_{\theta}(A)$ if and only if $U \cap A \neq \emptyset$ for each $U \in eR(X, x)$,

(b) If $A \subset B$, then $e - cl_{\theta}(A) \subset e - cl_{\theta}(B)$,

(c) $e - cl_{\theta}(e - cl_{\theta}(A)) = e - cl_{\theta}(A),$

(d) If A_{α} is e- θ -closed in X for each $\alpha \in \Lambda$, then $\cap_{\alpha \in \Lambda} A_{\alpha}$ is e- θ -closed in X.

Proof. The proofs of (a) and (b) are obvious.

(c) Generally we have $e - cl_{\theta}(A) \subset e - cl_{\theta}(e - cl_{\theta}(A))$. Suppose that $x \notin e - cl_{\theta}(A)$. There exists $U \in eR(X, x)$ such that $U \cap A = \emptyset$. Since $U \in eR(X)$, we have $e - cl_{\theta}(A) \cap U = \emptyset$. This shows that $x \notin e - cl_{\theta}(e - cl_{\theta}(A))$. Therefore, we obtain $e - cl_{\theta}(e - cl_{\theta}(A)) \subset e - cl_{\theta}(A)$.

(d) Let A_{α} be e- θ -closed in X for each $\alpha \in \Lambda$. For each $\alpha \in \Lambda$, $A_{\alpha} = e$ - $cl_{\theta}(A_{\alpha})$. Hence we have

$$e\text{-}cl_{\theta}(\cap_{\alpha\in\Lambda}A_{\alpha})\subset\cap_{\alpha\in\Lambda}e\text{-}cl_{\theta}(A_{\alpha})=\cap_{\alpha\in\Lambda}A_{\alpha}\subset e\text{-}cl_{\theta}(\cap_{\alpha\in\Lambda}A_{\alpha}).$$

Therefore, we obtain $e - cl_{\theta}(\cap_{\alpha \in \Lambda} A_{\alpha}) = \cap_{\alpha \in \Lambda} A_{\alpha}$. This shows that $\cap_{\alpha \in \Lambda} A_{\alpha}$ is $e - \theta$ -closed.

Remark 3.5. The union of two e- θ -closed sets is not necessarily e- θ -closed as shown by the following example.

Example 3.6. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The subsets $\{a\}$ and $\{b\}$ are e- θ -closed in (X, τ) but $\{a, b\}$ is not e- θ -closed.

Corollary 3.7. Let A and $A_{\alpha}(\alpha \in \Lambda)$ be any subsets of a space X. Then the following properties hold:

(a) A is e- θ -open in X if and only if for each $x \in A$ there exists $U \in eR(X, x)$ such that $x \in U \subset A$,

(b) $e - cl_{\theta}(A)$ is $e - \theta - closed$,

(c) If A_{α} is e- θ -open in X for each $\alpha \in \Lambda$, then $\cup_{\alpha \in \Lambda} A_{\alpha}$ is e- θ -open in X.

Theorem 3.8. For a subset A of a space X, the following properties hold:

(a) If $A \in eO(X)$, then $e - cl(A) = e - cl_{\theta}(A)$,

(b) $A \in eR(X)$ if and only if A is e- θ -open and e- θ -closed.

Proof. (a) Generally we have $e \cdot cl(B) \subset e \cdot cl_{\theta}(B)$ for every subset B of X. Let $A \in eO(X)$ and suppose that $x \notin e \cdot cl(A)$. Then there exists $U \in eO(X, x)$ such that $U \cap A = \emptyset$. Since $A \in eO(X)$, we have $e \cdot cl(U) \cap A = \emptyset$. This shows that $x \notin e \cdot cl_{\theta}(A)$. Hence we obtain $e \cdot cl(A) = e \cdot cl_{\theta}(A)$.

(b) Let $A \in eR(X)$. Then $A \in eO(X)$ and by (a), $A = e - cl_{\theta}(A) = e - cl_{\theta}(A)$. Therefore, A is $e - \theta$ -closed. Since $X \setminus A \in eR(X)$, by the argument above, $X \setminus A$ is $e - \theta$ -closed and hence A is $e - \theta$ -open. The converse is obvious.

Remark 3.9. It can be easily shown that e-regular $\Rightarrow e \cdot \theta$ -open $\Rightarrow e$ -open. But the converses are not necessarily true as shown by the following examples.

Example 3.10. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $\{a, b\}$ is *e*- θ -open in X but not *e*-regular.

Example 3.11. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Then the subset $\{a\}$ is *e*-open in X but not *e*- θ -open.

4. Strongly θ -e-continuous functions and some properties

In this section, we introduce a new type of continuous functions and look into some relations with other types.

Definition 4.1. A function $f: X \to Y$ is said to be strongly θ -*e*-continuous (briefly, st. θ .*e*.*c*.) if for each $x \in X$ and each open set V of Y containing f(x), there exists an *e*-open set U of X containing x such that $f(e\text{-}cl(U)) \subset V$.

Definition 4.2. A function $f: X \to Y$ is said to be

(a) strongly θ -continuous [14] if for each $x \in X$ and each open set V of Y containing f(x), there exists an open set U of X containing x such that $f(cl(U)) \subset V$;

(b) strongly θ -semicontinuous [9] if for each $x \in X$ and each open set V of Y containing f(x), there exists a semi-open set U of X containing x such that $f(scl(U)) \subset V$;

(c) strongly θ -precontinuous [15] if for each $x \in X$ and each open set V of Y containing f(x), there exists a preopen set U of X containing x such that $f(pcl(U)) \subset V$;

(d) strongly θ - β -continuous [16] if for each $x \in X$ and each open set V of Y containing f(x), there exists a semi-preopen set U of X containing x such that $f(spcl(U)) \subset V$;

(e) strongly θ -b-continuous [17] if for each $x \in X$ and each open set V of Y containing f(x), there exists a b-open set U of X containing x such that $f(bcl(U)) \subset V$;

(f) b-continuous [7] if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in BO(X, x)$ such that $f(U) \subset V$.

Remark 4.1. From Definitions 4.1 and 4.2, we have the following diagram:

However, none of these implications is reversible as shown by the following examples.

Example 4.2. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{\emptyset, X, \{b, c, d\}\}$. Then the identity function $f : (X, \tau) \rightarrow (X, \sigma)$ is both *b*-continuous and strongly θ -*b*-continuous but not strongly θ -*e*-continuous.

Example 4.3. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{\emptyset, X, \{d\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is strongly θ -*e*-continuous but not strongly θ -*b*-continuous.

Example 4.4. Let τ be the usual topology for \mathbb{R} and $\sigma = \{[0, 1] \cup ((1, 2) \cap \mathbb{Q}), \emptyset, \mathbb{R}\}$, where \mathbb{Q} denotes the set of rational numbers. Then the identity function $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$ is strongly θ -e-continuous but neither strongly θ -precontinuous nor strongly θ -semicontinuous.

Example 4.5. Let τ be the usual topology for \mathbb{R} and $\sigma = \{\emptyset, \mathbb{R}, [0, 1) \cap \mathbb{Q}\}$. Then the identity function $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$ is strongly θ - β -continuous but not strongly θ -e-continuous.

Theorem 4.6. For a function $f : X \to Y$, the following are equivalent: (a) f is strongly θ -e-continuous,

(b) For each $x \in X$ and each open set V of Y containing f(x), there exists $U \in eR(X, x)$ such that $f(U) \subset V$,

(c) $f^{-1}(V)$ is e- θ -open in X for each open set V of Y,

(d) $f^{-1}(F)$ is e- θ -closed in X for each closed set F of Y,

(e) $f(e - cl_{\theta}(A)) \subset cl(f(A))$ for each subset A of X,

(f) $e - cl_{\theta}(f^{-1}(B)) \subset f^{-1}(cl(B))$ for each subset B of Y.

Proof. (a) \Rightarrow (b). It follows from Theorem 3.1.

(b) \Rightarrow (c). Let V be any open set of Y and $x \in f^{-1}(V)$. There exists $U \in eR(X, x)$ such that $f(U) \subset V$. Therefore, we have $x \in U \subset f^{-1}(V)$. Hence by Corollary 3.7.(a), $f^{-1}(V)$ is $e \cdot \theta$ -open in X.

(c) \Rightarrow (d). This is obvious.

(d) \Rightarrow (e). Let A be any subset of X. Since cl(f(A)) is closed in Y, by (d) $f^{-1}(cl(f(A)))$ is e- θ -closed and we have

 $e - cl_{\theta}(A) \subset e - cl_{\theta}(f^{-1}(f(A))) \subset e - cl_{\theta}(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A))).$

Therefore, we obtain $f(e - cl_{\theta}(A)) \subset cl(f(A))$.

(e) ⇒ (f). Let B be any subset of Y. By (e), we obtain $f(e - cl_{\theta}(f^{-1}(B))) \subset cl(f(f^{-1}(B))) \subset cl(B)$ and hence $e - cl_{\theta}(f^{-1}(B)) \subset f^{-1}(cl(B))$.

(f) \Rightarrow (a). Let $x \in X$ and V be any open set of Y containing f(x). Since $Y \setminus V$ is closed in Y, we have $e \cdot cl_{\theta}(f^{-1}(Y \setminus V)) \subset f^{-1}(cl(Y \setminus V)) = f^{-1}(Y \setminus V)$. Therefore, $f^{-1}(Y \setminus V)$ is $e \cdot \theta$ -closed in X and $f^{-1}(V)$ is an $e \cdot \theta$ -open set containing x. There exists $U \in eO(X, x)$ such that $e \cdot cl(U) \subset f^{-1}(V)$ and hence $f(e \cdot cl(U)) \subset V$. This shows that f is st. θ .e.c.

Theorem 4.7. Let Y be a regular space. Then $f : X \to Y$ is $st.\theta.e.c.$ if and only if f is e-continuous.

Proof. Let $x \in X$ and V an open set of Y containing f(x). Since Y is regular, there exists an open set W such that $f(x) \in W \subset cl(W) \subset V$. If f is e-continuous, there exists $U \in eO(X, x)$ such that $f(U) \subset W$. We shall show that $f(e\text{-}cl(U)) \subset cl(W)$. Suppose that $y \notin cl(W)$. There exists an open set G containing y such that $G \cap W = \emptyset$. Since f is e-continuous, $f^{-1}(G) \in eO(X)$ and $f^{-1}(G) \cap U = \emptyset$ and hence $f^{-1}(G) \cap e\text{-}cl(U) = \emptyset$. Therefore, we obtain $G \cap f(e\text{-}cl(U)) = \emptyset$ and $y \notin f(e\text{-}cl(U))$. Consequently, we have $f(e\text{-}cl(U)) \subset cl(W) \subset V$. The converse is obvious.

Definition 4.3. A space X is said to be *e*-regular if for each closed set F and each point $x \in X \setminus F$, there exist disjoint *e*-open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 4.8. For a space X the following are equivalent:

(a) X is e-regular;

(b) For each point $x \in X$ and for each open set U of X containing x, there exists $V \in eO(X)$ such that $x \in V \subset e\text{-}cl(V) \subset U$;

(c) For each subset A of X and each closed set F such that $A \cap F = \emptyset$, there exist disjoint $U, V \in eO(X)$ such that $A \cap U \neq \emptyset$ and $F \subset V$;

(d) For each closed set F of X, $F = \cap \{ e \text{-}cl(V) | F \subset V, V \in eO(X) \}$.

Theorem 4.9. A continuous function $f : X \to Y$ is st. θ .e.c. if and only if X is e-regular.

Proof. Necessity. Let $f: X \to X$ be the identity function. Then f is continuous and st. θ .e.c. by our hypothesis. For any open set U of X and any point $x \in U$, we have $f(x) = x \in U$ and there exists $V \in eO(X, x)$ such that $f(e\text{-}cl(V)) \subset U$. Therefore, we have $x \in V \subset e\text{-}cl(V) \subset U$. It follows from Lemma 4.8 that X is e-regular.

Sufficiency. Suppose that $f: X \to Y$ is continuous and X is *e*-regular. For any $x \in X$ and open set V containing $f(x), f^{-1}(V)$ is an open set containing x. Since X is *e*-regular, there exists $U \in eO(X)$ such that $x \in U \subset e\text{-}cl(U) \subset$ $f^{-1}(V)$. Therefore, we have $f(e\text{-}cl(U)) \subset V$. This shows that f is st. θ .e.c. \Box

Theorem 4.10. Let $f : X \to Y$ be a function and $g : X \to X \times Y$ be the graph function of f. If g is st. θ .e.c., then f is st. θ .e.c. and X is e-regular.

Proof. First, we show that f is st. θ .e.c. Let $x \in X$ and V an open set of Y containing f(x). Then $X \times V$ is an open set of $X \times Y$ containing g(x). Since g is st. θ .e.c., there exists $U \in eO(X, x)$ such that $g(e\text{-}cl(U)) \subset X \times V$. Therefore, we obtain $f(e\text{-}cl(U)) \subset V$. Next, we show that X is e-regular. Let U be any open set of X and $x \in U$. Since $g(x) \in U \times Y$ and $U \times Y$ is open in $X \times Y$, there exists $G \in eO(X, x)$ such that $g(e\text{-}cl(G)) \subset U \times Y$. Therefore, we obtain $x \in G \subset e\text{-}cl(G) \subset U$ and hence X is e-regular.

Theorem 4.11. Let $f : X \to Y$ and $g : Y \to Z$ be functions. If f is st. θ .e.c. and g is continuous, then the composition $g \circ f : X \to Z$ is st. θ .e.c.

Proof. It is clear from Theorem 4.6.

We recall that a space X is said to be submaximal [20] if each dense subset of X is open in X. It is shown in [20] that a space X is submaximal if and only if every preopen set of X is open. A space X is said to be extremally disconnected [4] if the closure of each open set of X is open. Note that an extremally disconnected space is exactly the space where every semiopen set is α -open.

Theorem 4.12. Let X be a submaximal extremally disconnected space. Then the following properties are equivalent for a function $f: X \to Y$.

- (a) f is strongly θ -continuous;
- (b) f is strongly θ -semicontinuous;
- (c) f is strongly θ -precontinuous;
- (d) f is strongly θ -b-continuous;
- (e) f is strongly θ -e-continuous;
- (f) f is strongly θ - β -continuous.

Proof. It follows from the fact that if X is submaximal extremally disconnected, then open set, preopen set, semiopen set, *b*-open set, *e*-open set and semi-preopen set are equivalent.

5. Separation axioms

We introduce a new type of space called e- T_2 and some properties between strongly θ -e-continuous and e- T_2 are obtained.

Definition 5.1. A space X is said to be e- T_2 if for each pair of distinct points x and y in X, there exist $U \in eO(X, x)$ and $V \in eO(X, y)$ such that $U \cap V = \emptyset$.

Lemma 5.1. A space X is $e \cdot T_2$ if and only if for each pair of distinct points x and y in X, there exist $U \in eO(X, x)$ and $V \in eO(X, y)$ such that $e \cdot cl(U) \cap e \cdot cl(V) = \emptyset$.

Theorem 5.2. If $f : X \to Y$ is a st. θ .e.c. injection and Y is T_0 , then X is e- T_2 .

Proof. For any distinct points x and y of X, by hypothesis $f(x) \neq f(y)$ and there exists either an open set V containing f(x) not containing f(y) or an open set W containing f(y) not containing f(x). If the first case holds, then there exists $U \in eO(X, x)$ such that $f(e\text{-}cl(U)) \subset V$. Thus, we obtain $f(y) \notin f(e\text{-}cl(U))$ and hence $X \setminus e\text{-}cl(U) \in eO(X, y)$. If the second case holds, then we obtain a similar result. Thus, X is $e\text{-}T_2$.

Theorem 5.3. If $f : X \to Y$ is a st. θ .e.c. function and Y is Hausdorff, then the subset $A = \{(x, y) | f(x) = f(y)\}$ is e- θ -closed in $X \times X$.

Proof. It is clear that $f(x) \neq f(y)$ for each $(x, y) \notin A$. Since Y is Hausdorff, there exist open sets V and W of Y containing f(x) and f(y), respectively, such that $V \cap W = \emptyset$. Since f is st. θ .e.c., there exist $U \in eO(X, x)$ and $G \in eO(X, y)$ such that $f(e\text{-}cl(U)) \subset V$ and $f(e\text{-}cl(G)) \subset W$. Put $D = f(e\text{-}cl(U)) \times f(e\text{-}cl(G))$. It follows that $(x, y) \in D \in eR(X \times X)$ and $D \cap A = \emptyset$. This means that $e\text{-}cl_{\theta}(A) \subset A$ and thus, A is $e\text{-}\theta\text{-}closed$ in $X \times X$.

We recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) | x \in X\}$ of $X \times Y$ is called the graph of f and is denoted by G(f).

Definition 5.2. The graph G(f) of a function $f: X \to Y$ is said to be strongly *e*-closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in eO(X, x)$ and an open set V in Y containing y such that $(e - cl(U) \times V) \cap G(f) = \emptyset$.

Lemma 5.4. The graph G(f) of a function $f : X \to Y$ is strongly e-closed if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in eO(X, x)$ and an open set V in Y containing y such that $f(e\text{-}cl(U)) \cap V = \emptyset$.

Theorem 5.5. If $f : X \to Y$ is st. θ .e.c. and Y is Hausdorff, then G(f) is strongly e-closed in $X \times Y$.

Proof. It is clear that $f(x) \neq y$ for each $(x, y) \in (X \times Y) \setminus G(f)$. Since Y is Hausdorff, there exist open sets V and W in Y containing f(x) and y, respectively, such that $V \cap W = \emptyset$. Since f is st. θ .e.c., there exists $U \in eO(X, x)$ such that $f(e\text{-}cl(U)) \subset V$. Thus, $f(e\text{-}cl(U)) \cap W = \emptyset$ and then by Lemma 5.4, G(f) is strongly e-closed in $X \times Y$.

6. Covering properties

Definition 6.1. A space X is said to be

(a) e-closed if every cover of X by e-open sets has a finite subcover whose preclosures cover X;

(b) countably e-closed if every countable cover of X by e-open sets has a finite subcover whose preclosures cover X.

A subset A of a space X is said to be e-closed relative to X if for every cover $\{V_{\alpha} : \alpha \in \Lambda\}$ of A by e-open sets of X, there exists a finite subset Λ_0 of Λ such that $A \subset \cup \{e - cl(V_{\alpha}) : \alpha \in \Lambda_0\}$.

Theorem 6.1. If $f : X \to Y$ is a st. θ .e.c. function and A is e-closed relative to X, then f(A) is a compact set of Y.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a cover of f(A) by open sets of Y. For each point $x \in A$, there exists $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is st. θ .e.c., there exists $U_x \in eO(X, x)$ such that $f(e\text{-}cl(U_x)) \subset V_{\alpha(x)}$. The family $\{U_x : x \in A\}$ is a cover of A by e-open sets of X and hence there exists a finite subset A_0 of A such that $A \subset \bigcup_{x \in A_0} e\text{-}cl(U_x)$. Therefore, we obtain $f(A) \subset \bigcup_{x \in A_0} V_{\alpha(x)}$. This shows that f(A) is compact.

Corollary 6.2. Let $f : X \to Y$ be a st. θ .e.c. surjection. Then the following properties hold:

(a) If X is e-closed, then Y is compact,

(b) If X is countably e-closed, then Y is countably compact.

Theorem 6.3. If a function $f : X \to Y$ has a strongly e-closed graph, then f(A) is closed in Y for each subset A which is e-closed relative to X.

Proof. Let A be e-closed relative to X and $y \in Y \setminus f(A)$. Then for each $x \in A$ we have $(x, y) \notin G(f)$ and by Lemma 5.4 there exist $U_x \in eO(X, x)$ and an open set V_x of Y containing y such that $f(e\text{-}cl(U_x)) \cap V_x = \emptyset$. The family $\{U_x : x \in A\}$ is a cover of A by e-open sets of X. Since A is e-closed relative to X, there exists a finite subset A_0 of A such that $A \subset \cup \{e\text{-}cl(U_x) : x \in A_0\}$. Put $V = \cap \{V_x : x \in A_0\}$. Then V is an open set containing y and $f(A) \cap V \subset$ $[\bigcup_{x \in A_0} f(e\text{-}cl(U_x))] \cap V \subset \bigcup_{x \in A_0} [f(e\text{-}cl(U_x)) \cap V_x] = \emptyset$. Therefore, we have $y \notin cl(f(A))$ and hence f(A) is closed in Y. \Box

Theorem 6.4. Let X be a submaximal extremally disconnected space. If a function $f: X \to Y$ has a strongly e-closed graph, then $f^{-1}(A)$ is θ -closed in X for each compact set A of Y.

Proof. Let A be a compact set of Y and $x \notin f^{-1}(A)$. Then for each $y \in A$ we have $(x, y) \notin G(f)$ and by Lemma 5.4 there exist $U_y \in eO(X, x)$ and an open set V_y of Y containing y such that $f(e\text{-}cl(U_y)) \cap V_y = \emptyset$. The family $\{V_y : y \in A\}$ is an open cover of A and there exists a finite subset A_0 of A such that $A \subset \bigcup_{y \in A_0} V_y$. Since X is submaximal extremally disconnected, each U_y is open in X and $e\text{-}cl(U_y) = cl(U_y)$. Set $U = \bigcap_{y \in A_0} U_y$, then U is an open set containing x and

$$f(cl(U)) \cap A \subset \bigcup_{x \in A_0} [f(cl(U)) \cap V_y] \subset \bigcup_{x \in A_0} [f(e-cl(U_y)) \cap V_y] = \emptyset.$$

Therefore, we have $cl(U) \cap f^{-1}(A) = \emptyset$ and hence $x \notin cl_{\theta}(f^{-1}(A))$. This shows that $f^{-1}(A)$ is θ -closed in X.

Corollary 6.5. Let X be a submaximal extremally disconnected space and Y be a compact Hausdorff space. For a function $f : X \to Y$, the following properties are equivalent:

- (a) f is st. θ .e.c.,
- (b) G(f) is strongly e-closed in $X \times Y$,
- (c) f is strongly θ -continuous,
- (d) f is continuous,

(e) f is e-continuous.

Proof. (a) \Rightarrow (b). It follows from Theorem 5.5.

(b) \Rightarrow (c). It follows from Theorem 6.4.

 $(c) \Rightarrow (d) \Rightarrow (e)$. These are obvious.

(e) \Rightarrow (a). Since Y is regular, it follows from Theorem 4.7.

Acknowledgments. The authors thank the referees for their careful reading of the paper.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ. A 12 (1983), no. 1, 77–90.
- [2] D. Andrijević, Semipreopen sets, Mat. Vesnik 38 (1986), no. 1, 24–32.
- [3] _____, On b-open sets, Mat. Vesnik 48 (1996), no. 1-2, 59–64.
- [4] N. Bourbaki, Elements of mathematics. General topology. Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1966.
- [5] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99–112.
- [6] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 269–282.
- [7] A. A. El-Atik, A study of some types of mappings on topological spaces, M. Sc. Thesis, Tanta University, Egypt, 1997.
- [8] E. Hatir and T. Noiri, Decompositions of continuity and complete continuity, Acta Math. Hungar. 113 (2006), no. 4, 281–287.
- [9] S. Jafari and T. Noiri, On strongly θ-semi-continuous functions, Indian J. Pure Appl. Math. 29 (1998), no. 11, 1195–1201.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.

- [11] P. E. Long and L. L. Herrington, Strongly θ-continuous functions, J. Korean Math. Soc. 18 (1981/82), no. 1, 21–28.
- [12] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt No. 53 (1982), 47–53.
- [13] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [14] T. Noiri, On δ -continuous functions, J. Korean Math. Soc. **16** (1979/80), no. 2, 161–166. [15] ______, Strongly θ -precontinuous functions, Acta Math. Hungar. **90** (2001), no. 4, 307–
- 316.
- [16] T. Noiri and V. Popa, Strongly $\theta\text{-}\beta\text{-}continuous$ functions, submitted.
- [17] J. H. Park, Strongly $\theta\text{-}b\text{-}continuous$ functions, Acta Math. Hungar. 110 (2006), no. 4, 347–359.
- [18] J. H. Park, B. Y. Lee, and M. J. Son, On δ-semiopen sets in topological space, J. Indian Acad. Math. 19 (1997), no. 1, 59–67.
- [19] S. Raychaudhuri and N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sin. 21 (1993), no. 4, 357–366.
- [20] I. L. Reilly and M. K. Vamanamurthy, On some questions concerning preopen sets, Kyungpook Math. J. 30 (1990), no. 1, 87–93.
- [21] M. J. Son, On δ -semiopen sets and δ -semicontinuous functions, Ph. D. Thesis Dong-A Univ, 1999.
- [22] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. Ser. 2 78 (1968), 103–118.

MURAD ÖZKOÇ EGE UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS 35100 BORNOVA-İZMİR, TURKEY *E-mail address*: murad.ozkoc@ege.edu.tr

Gülhan Aslim Ege University Faculty of Science Department of Mathematics 35100 Bornova-İZMİR, Turkey *E-mail address*: gulhan.aslim@ege.edu.tr