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ON STRONGLY 6-e-CONTINUOUS FUNCTIONS

MURAD OZKOQ AND GULHAN ASLIM

ABSTRACT. A new class of generalized open sets in a topological space,
called e-open sets, is introduced and some properties are obtained by
Ekici [6]. This class is contained in the class of d-semi-preopen (or
d--open) sets and weaker than both §-semiopen sets and §-preopen sets.
In order to investigate some different properties we introduce two strong
form of e-open sets called e-regular sets and e-6-open sets. By means of
e-0-open sets we also introduce a new class of functions called strongly
0-e-continuous functions which is a generalization of #-precontinuous func-
tions. Some characterizations concerning strongly 6-e-continuous func-
tions are obtained.

1. Introduction

The concept of strong #-continuity which is stronger than §-continuity [14]
is introduced by Noiri [14]. Some properties of strongly #-continuous functions
defined by 6-open sets are studied by Long and Herrington [11]. Recently,
four generalizations of strong #-continuity are obtained by Jafari and Noiri [9],
Noiri [15], Noiri and Popa [16] and Park [17]. In this paper, we introduce and
investigate some fundamental properties of strongly #-e-continuous functions
defined via e-open sets introduced by Ekici [6] in a topological space. It turns
out that strong #-e-continuity is stronger than strong 6-(-continuity [16] and
weaker than strong #-precontinuity [15].

2. Preliminaries

Throughout the present paper, spaces X and Y always mean topological
spaces. Let X be a topological space and A a subset of X. The closure of A
and the interior of A are denoted by ¢l(A) and int(A), respectively. A subset
A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A =
cl(int(A))). The o-interior [22] of a subset A of X is the union of all regu-
lar open sets of X contained in A and is denoted by ints(A). The subset A
is called d-open [22] if A = ints(A), i.e., a set is d-open if it is the union of
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regular open sets. The complement of a J-open set is called d-closed. Al-
ternatively, a set A C (X,7) is called d-closed [22] if A = cls(A), where
cs(A) ={z|x € U € 7 = int(cl(A)) N A # 0} . The family of all j-open (resp.
d-closed) sets in X is denoted by 60(X) (resp. 6C(X)).

The e-interior [6] of a subset A of X is the union of all e-open sets of X
contained in A and is denoted by e-int(A). The e-closure [6] of a subset A of
X is the intersection of all e-closed sets of X containing A and is denoted by
e-cl(A).

A subset A of X is called semiopen [10] (resp. a-open [13], é-semiopen [18],
preopen [12], §-preopen [19], e-open [6], semi-preopen [2] (or S-open [1]), §-semi-
preopen (or d-B-open [8]) if A C cl(int(A)) (resp. A C int(cl(int(A))), A C
c(ints(A4)), A C int(cl(A)), A C int(cls(A)), A C int(cls(A)) U cl(ints(A)),
A C d(int(cl(A))), A C cl(int(cls(A)))) and the complement of a semiopen
(resp. a-open, d-semiopen, preopen, d-preopen, semi-preopen, d-semi-preopen)
set are called semiclosed (resp. a-closed, d-semiclosed, preclosed, d-preclosed,
semi-preclosed, §-semi-preclosed). A subset A is called d-semi regular [18] (resp.
d-pre-regular [19]) if it is d-semiopen and J-semiclosed (resp. d-preopen and
d-preclosed). The intersection of all semiclosed (resp. preclosed, d-semiclosed,
d-preclosed) sets of X containing A is called the semi-closure [5] (resp. pre-clos-
ure [12], §-semi-closure [18], -pre-closure [19]) of A and is denoted by scl(A)
(resp. pcl(A), 6-scl(A), §-pcl(A)). Dually, the semi-interior (resp. pre-interior,
d-semi-interior, §-pre-interior) of A is defined to be the union of all semiopen
(resp. preopen, J-semiopen, J-preopen) sets contained in A and is denoted
by sint(A) (resp. pint(A), 6-sint(A), é-pint(A)). The family of all J-semiopen
(resp. d-preopen, d-semi-preopen (or §-3-open)) sets in X is denoted by 6SO(X)
(resp. 6PO(X),550(X)).

Lemma 2.1 ([18], [19]). Let A be a subset of a space X. Then the following
hold:

(a) 0-scl(A) = AUint(cls(A)), d-sint(A) = AN cl(ints(A)),

(b) 0-pcl(A) = AU cl(ints(A)), d-pint(A) = ANint(cls(A)).

Lemma 2.2 ([18], [19]). Let A be a subset of a space X. Then the following
hold:

(a) d-scl(0-sint(A)) = -sint(A) Uint(cl(ints(A))),

(b) d-pcl(0-pint(A)) = §-pint(A) U cl(ints(A)).

Lemma 2.3 ([22]). Let A and B be any subsets of a space X. Then the fol-
lowing hold:

(a) A € 60(X) if and only if A =ints(A),

(b) cls(X\A) = X\int5(A),

(c) ints(AN B) = ints(A) Nints(B),

(d) If A, is d-open in X for each oo € A, then Unen Ay is §-open in X.

The family of all e-open (e-closed) sets in X will be denoted by eO(X) (eC
(X)), respectively.
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3. e-regular sets and e-0-open sets

In this section we introduce some strong types of e-open sets, called e-regular
sets and e-0-open sets. Using these sets we give a characterization of e-open
sets and some properties.

Definition 3.1. A subset A of a topological space X is e-regular if it is
e-open and e-closed. The family of all e-regular sets in X will be denoted by
eR(X). The family of all e-regular sets which contain z in X will be denoted
by eR(X, ).

Theorem 3.1. For a subset A of a topological space X, the following properties
hold:

(a) A € eO(X) if and only if e-cl(A) € eR(X),

(b) A € eC(X) if and only if e-int(A) € eR(X).
Proof. We will prove only the first statement. The second one can be proved

similarly.
Necessity. Let A € eO(X).

A€ eO(X)= A Cint(cls(A)) Ucl(ints(A))
= e-cl(A) C e-cl(int(cls(A)) Ucl(ints(A)))
= e-cl(A) C d-scl(int(cls(A)) U cl(ints(A)))N
d-pel(int(cls(A)) U cl(ints(A)))
From Lemma 2.1 we have
e-cl(A)
C [(int(cls(A)) Ucl(ints(A))) Uint(cls(int(cls(A)) U cl(ints(A))))N
[(int(cla(A)) U cl(ints(4))) U el ints(int(cls(A)) U cl(ints(A))]
C [(int(cls(A)) Ucl(ints(A))) U (int(cls(int(cls(A)))) U cls(cl(ints(A))))]N
[(int(cls(A)) U cl(ints(A))) U (cl(int(cls(A)) U cl(ints(A))))]
C [(int(cls(A)) Ucl(ints(A))) U (int(cls(A) Ucls(cls(ints(A)))))]N
[(int(cls(A)) U el(ints(A))) U (cl(int(cls(A))) U cl(cl(ints(A))))]
C [(int(cls(A)) Ucl(ints(A))) U (int(cls(A)) U cs(ints(A)))]IN
[(int(cls(A)) U cl(ints(A))) U (cl(int(cls(A))) U cl(ints(A)))]
C [(int(cls(A)) Ucl(ints(A))) U (int(cls(A)) U cl(ints(A)))]N
[el(int(cls(A))) U cl(ints(A))]
C [(int(cls(A)) Ucl(ints(A)))] N [cl(int(cls(A))) U cl(ints(A))]

C int(cls(A)) Ucl(ints(A)).

Since A C e-cl(A), we have e-cl(A) C int(cls(e-cl(A)))Ucl(ints(e-cl(A))). This
shows that e-cl(A) is an e-open set. On the other hand, e-cl(A) is always an
e-closed set. Therefore e-cl(A) is an e-regular set.
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Sufficiency. This follows from [6, Theorem 2.15]. O

Theorem 3.2. For a subset A of a topological space X, the following are
equivalent:

(a) A € eR(X),

(b) A = e-cl(e-int(A)),

(c) A = e-int(e-cl(A)).

Proof. The proofs of the implications (a) =(b) and (a)=-(c) are obvious.

(b) = (a): Since e-cl(A) is e-closed, by Theorem 3.1(a) we have e-int(e-cl(A))
€ eR(X) and A € eR(X).

(¢) = (a): Since e-int(A) is e-open, by Theorem 3.1(b) we have e-cl(e-int(A))
€ eR(X) and A € eR(X). O

Definition 3.2. A point z of X is called an e-6-cluster point of A if e-cl(U) N
A # () for every U € eO(X,x). The set of all e-f-cluster points of A is called
e-0-closure of A and is denoted by e-cly(A). A subset A is said to be e-6-closed
if A= e-clp(A). The complement of an e-6-closed set is said to be e-8-open.

Theorem 3.3. For any subset A of a space X, we have

e-clg(A) =N{V]|ACV and V is e-0-closed}
=N{V|ACV andV € eR(X)}.

Proof. We prove only the first equality since the other is similarly proved.
First, suppose that @ ¢ e-clg(A). Then there exists V € eO(X,x) such that
e-cl(V)N A = 0. By Theorem 3.1, X\e-cl(V) is e-regular and hence X \e-cl(V)
is an e-f-closed set containing A and = ¢ X\e-cl(V). Therefore, we have = ¢
N{V]ACV and V is e-0-closed} . Conversely, suppose that x ¢ N{V]|ACV
and V is e-f-closed}. There exists an e-f-closed set V' such that A C V and
x ¢ V. There exists U € eO(X) such that x € U C e-cl(U) C X\V. Therefore,
we have e-cl(U) N A C e-cl(U) NV = (). This shows that z ¢ e-clg(A). O

Theorem 3.4. Let A and B be any subsets of a space X. Then the following
properties hold:

(a) = € e-clg(A) if and only if UN A # O for each U € eR(X, x),

(b) If A C B, then e-clg(A) C e-cly(B),

(c) e-clp(e-clg(A)) = e-cly(A),

(d) If A, is e-8-closed in X for each o € A, then NpearAqs is e-0-closed in
X.

Proof. The proofs of (a) and (b) are obvious.

(c) Generally we have e-clg(A) C e-clp(e-clg(A)). Suppose that = ¢ e-clg(A).
There exists U € eR(X,z) such that U N A = 0. Since U € eR(X), we have
e-clg(A) N U = . This shows that z ¢ e-clg(e-clp(A)). Therefore, we obtain
e-clp(e-clg(A)) C e-clg(A).
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(d) Let A, be e-f-closed in X for each « € A. For each @ € A A, =
e-clg(Ay). Hence we have

e-clo(NaenAa) C Nacae-clg(Aa) = NaerAa C e-clo(NaecrAa).

Therefore, we obtain e-clg(NaerAa) = NacaAen. This shows that Npep Ay is
e-0-closed. O

Remark 3.5. The union of two e-6-closed sets is not necessarily e-6-closed as
shown by the following example.

Example 3.6. Let X = {a,b,c} and 7 = {0, X, {a}, {b},{a,b}} . The subsets
{a} and {b} are e-f-closed in (X, 7) but {a,b} is not e-6-closed.

Corollary 3.7. Let A and A,(a € A) be any subsets of a space X. Then the
following properties hold:

(a) A is e-0-open in X if and only if for each x € A there exists U € eR(X, x)
such that ¢ € U C A,

(b) e-clg (A) is e-f-closed,

(c) If A, is e-0-open in X for each o € A, then Unen Ao is e-0-open in X.

Theorem 3.8. For a subset A of a space X, the following properties hold:
(a) If A € eO(X), then e-cl(A) = e-cly(A),
(b) A € eR(X) if and only if A is e-8-open and e-0-closed.

Proof. (a) Generally we have e-cl(B) C e-clg(B) for every subset B of X. Let
A € eO(X) and suppose that = ¢ e-cl(A). Then there exists U € eO(X, z) such
that U N A = (). Since A € eO(X), we have e-cl(U) N A = (). This shows that
x ¢ e-clg(A). Hence we obtain e-cl(A) = e-clg(A).

(b) Let A € eR(X). Then A € eO(X) and by (a), A = e-cl(A) = e-clg(A).
Therefore, A is e-6-closed. Since X\ A € eR(X), by the argument above, X\ A
is e-f-closed and hence A is e-f-open. The converse is obvious. O

Remark 3.9. It can be easily shown that e-regular = e-6-open = e-open. But
the converses are not necessarily true as shown by the following examples.

Example 3.10. Let X = {a,b,c} and 7 = {0, X, {a}, {b},{a,b}}. Then the
subset {a,b} is e-6-open in X but not e-regular.

Example 3.11. Let X = {a,b,c,d,e} and 7 = {0, X, {a},{c},{a,c},{c,d},
{a,¢,d}}. Then the subset {a} is e-open in X but not e-f-open.

4. Strongly 0-e-continuous functions and some properties

In this section, we introduce a new type of continuous functions and look
into some relations with other types.

Definition 4.1. A function f : X — Y is said to be strongly 6-e-continuous
(briefly, st.f.e.c.) if for each € X and each open set V of Y containing f(x),
there exists an e-open set U of X containing x such that f(e-cl(U)) C V.
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Definition 4.2. A function f: X — Y is said to be

(a) strongly #-continuous [14] if for each € X and each open set V of
Y containing f(x), there exists an open set U of X containing x such that
F(U)) € V;

(b) strongly #-semicontinuous [9] if for each z € X and each open set V of
Y containing f(z), there exists a semi-open set U of X containing x such that
J(sel(U)) € V;

(c) strongly #-precontinuous [15] if for each z € X and each open set V of
Y containing f(x), there exists a preopen set U of X containing x such that
() C V;

(d) strongly #-3-continuous [16] if for each € X and each open set V of YV’
containing f(x), there exists a semi-preopen set U of X containing x such that
F(spel(U)) € V;

(e) strongly 6-b-continuous [17] if for each € X and each open set V' of
Y containing f(z), there exists a b-open set U of X containing z such that
f(bed(U)) C V5

(f) b-continuous [7] if for each z € X and each open set V of ¥ containing
f(z), there exists U € BO (X, ) such that f(U) C V.

Remark 4.1. From Definitions 4.1 and 4.2, we have the following diagram:

st. O-precon. — st. f-e-con.

/ N\ N\

st. 6-con. st. -b-con. — st. -(-con.

N /

st. f-semicon.

However, none of these implications is reversible as shown by the following
examples.

Example 4.2. Let X = {a,b,¢,d,e} and 7 = {0, X, {a},{c},{a,c},{c,d},
{a,c,d}} and o = {0, X,{b,c,d}}. Then the identity function f : (X,7) —
(X, o) is both b-continuous and strongly #-b-continuous but not strongly 6-e-co-
ntinuous.

Example 4.3. Let X = {a,b,¢,d,e} and 7 = {0, X, {a},{c},{a,c},{c,d},
{a,c,d}} and 0 = {0, X, {d}}. Then the identity function f : (X,7) — (X,0)
is strongly #-e-continuous but not strongly 6-b-continuous.

Example 4.4. Let 7 be the usual topology for R and o = {[0,1] U ((1,2) N Q),
(), R}, where Q denotes the set of rational numbers. Then the identity function
f:(R,7) — (R, o) is strongly #-e-continuous but neither strongly #-preconti-
nuous nor strongly #-semicontinuous.

Example 4.5. Let 7 be the usual topology for R and o = {0, R,[0,1) N Q}.

Then the identity function f : (R,7) — (R, o) is strongly 6-(-continuous but
not strongly 6-e-continuous.
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Theorem 4.6. For a function f: X — Y, the following are equivalent:

(a) f is strongly 0-e-continuous,
For each x € X and each open set V' of Y containing f(x), there exists
R(X x) such that f(U) CV,
f- ( ) is e-B-open in X for each open set V of Y,
fY(F) is e-O-closed in X for each closed set F of Y,
f
e-c

(b
Ue

(e clo(A)) C cl(f(A)) for each subset A of X,
lo(f~Y(B)) C f~1(cl(B)) for each subset B of Y.

Proof. (a) = (b). It follows from Theorem 3.1.

(b) = (c). Let V be any open set of Y and x € f~!(V). There exists
U € eR(X, ) such that f(U) C V. Therefore, we have x € U C f~1(V). Hence
by Corollary 3.7.(a), f~1(V) is e-6-open in X.

(¢) = (d). This is obvious.

(d) = (e). Let A be any subset of X. Since cl(f(A)) is closed in Y, by (d)
F7L(cl(f(A))) is e-O-closed and we have

e=clg(A) C e-clo(f 1 (f(A))) C e=clo(f7H(cl(F(A)) = f 7 (cl(£(A))).
Therefore, we obtain f(e-clg(A)) C cl(f(A)).

(e) = (f). Let B be any subset of Y. By (e), we obtain f(e-clg(f~1(B))) C
c(f(f~X(B))) C cl(B) and hence e-cly(f~(B)) C f~1(cl(B)).

(f) = (a). Let z € X and V be any open set of Y containing f(z). Since
Y\V is closed in Y, we have e-cly(f~1(Y\V)) C f~H(c(Y\V)) = f~ LYY \V).
Therefore, f~1(Y'\V) is e-f-closed in X and f~1(V) is an e-f-open set con-
taining 2. There exists U € eO(X, z) such that e-cl(U) C f~1(V) and hence
fle-cl(U)) C V. This shows that f is st.f.c.c. O

Theorem 4.7. Let' Y be a reqular space. Then f: X — Y is st.f.e.c. if and
only if f is e-continuous.

Proof. Let z € X and V an open set of Y containing f(z). Since Y is reg-
ular, there exists an open set W such that f(x) € W C (W) C V. If f
is e-continuous, there exists U € eO(X,x) such that f(U) C W. We shall
show that f(e-cl(U)) C cl(W). Suppose that y ¢ cl(W). There exists an
open set G containing y such that G N W = (. Since f is e-continuous,
f7HG) € eO(X) and f~1(G)NU = 0 and hence f~HG) Ne-cl(U) = 0.
Therefore, we obtain GN f(e-cl(U)) =0 and y ¢ f(e-cl(U)). Consequently, we
have f(e-cl(U)) C ¢l(W) C V. The converse is obvious. O

Definition 4.3. A space X is said to be e-regular if for each closed set F' and
each point € X\ F, there exist disjoint e-open sets U and V such that z € U
and FFC V.

Lemma 4.8. For a space X the following are equivalent:

(a) X is e-regular;

(b) For each point x € X and for each open set U of X containing x, there
exists V € eO(X) such that x € V C e-cl(V) C U;
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(¢c) For each subset A of X and each closed set F such that ANF = (), there
exist disjoint U,V € eO(X) such that ANU # 0 and F C V;
(d) For each closed set F of X, F =N{e-cl(V)|F CV, V€eO(X)}.

Theorem 4.9. A continuous function f : X — Y is st.f0.e.c. if and only if X
is e-reqular.

Proof. Necessity. Let f : X — X be the identity function. Then f is continuous
and st.f.e.c. by our hypothesis. For any open set U of X and any point x € U,
we have f(x) = € U and there exists V' € eO(X, ) such that f(e-cl(V)) C U.
Therefore, we have x € V C e-cl(V)) C U. It follows from Lemma 4.8 that X is
e-regular.

Sufficiency. Suppose that f: X — Y is continuous and X is e-regular. For
any € X and open set V containing f(z), f~1(V) is an open set containing
x. Since X is e-regular, there exists U € eO(X) such that z € U C e-cl(U) C
f71(V). Therefore, we have f(e-cl(U)) C V. This shows that f is st.f.e.c. [

Theorem 4.10. Let f: X — Y be a function and g : X — X XY be the graph
function of f. If g is st.0.e.c., then [ is st.0.e.c. and X is e-reqular.

Proof. First, we show that f is st.f.e.c. Let x € X and V an open set of Y
containing f(x). Then X x V is an open set of X x Y containing g(x). Since g
is st.f.e.c., there exists U € eO(X, ) such that g(e-cl(U)) C X x V. Therefore,
we obtain f(e-cl(U)) C V. Next, we show that X is e-regular. Let U be any
open set of X and « € U. Since g(z) € U xY and U x Y is open in X x Y,
there exists G € eO(X, z) such that g(e-cl(G)) C U x Y. Therefore, we obtain
x € G C e-cl(G) C U and hence X is e-regular. O

Theorem 4.11. Let f : X — Y and g: Y — Z be functions. If f is st.0.e.c.
and g is continuous, then the composition go f : X — Z is st.0.e.c.

Proof. 1t is clear from Theorem 4.6. O

We recall that a space X is said to be submazimal [20] if each dense subset
of X is open in X. It is shown in [20] that a space X is submaximal if and
only if every preopen set of X is open. A space X is said to be extremally
disconnected [4] if the closure of each open set of X is open. Note that an
extremally disconnected space is exactly the space where every semiopen set is
a-open.

Theorem 4.12. Let X be a submaximal extremally disconnected space. Then
the following properties are equivalent for a function f: X — Y.

(a) f is strongly 6-continuous;

(b) f is strongly 0-semicontinuous;

(¢c) f is strongly 0-precontinuous;

(d) f is strongly 0-b-continuous;

(e) f is strongly 0-e-continuous;
(f) f is strongly 6-3-continuous.
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Proof. 1t follows from the fact that if X is submaximal extremally disconnected,
then open set, preopen set, semiopen set, b-open set, e-open set and semi-
preopen set are equivalent. ([

5. Separation axioms

We introduce a new type of space called e-T5 and some properties between
strongly #-e-continuous and e-T5 are obtained.

Definition 5.1. A space X is said to be e-T5 if for each pair of distinct points
x and y in X, there exist U € eO(X, z) and V € eO(X,y) such that UNV = (.

Lemma 5.1. A space X is e-Ts if and only if for each pair of distinct points
x and y in X, there exist U € eO(X,x) and V € eO(X,y) such that e-cl(U) N
e-cl(V) =0.

Theorem 5.2. If f : X — Y is a st.f0.e.c. injection and Y is Ty, then X is
€-T2.

Proof. For any distinct points z and y of X, by hypothesis f(z) # f(y) and
there exists either an open set V' containing f(x) not containing f(y) or an
open set W containing f(y) not containing f(z). If the first case holds, then
there exists U € eO(X,x) such that f(e-cl(U)) C V. Thus, we obtain f(y) ¢
fle-cl(U)) and hence X\e-cl(U) € eO(X,y). If the second case holds, then we
obtain a similar result. Thus, X is e-T5. [l

Theorem 5.3. If f: X — Y is a st.0.e.c. function and Y is Hausdorff, then
the subset A = {(x,y)| f(x) = f(y)} is e-0-closed in X x X.

Proof. Tt is clear that f(x) # f(y) for each (z,y) ¢ A. Since Y is Hausdorff,
there exist open sets V and W of Y containing f(z) and f(y), respectively,
such that V N W = . Since f is st.f.e.c., there exist U € eO(X,z) and G €
eO(X,y) such that f(e-cl(U)) C V and f(e-cl(G)) C W. Put D = f(e-cl(U)) x
f(e-cl(@)). It follows that (z,y) € D € eR(X x X) and DN A = (). This means
that e-clg(A) C A and thus, A is e-f-closed in X x X. O

We recall that for a function f : X — Y, the subset {(z, f(x))|z € X} of
X x Y is called the graph of f and is denoted by G(f).

Definition 5.2. The graph G(f) of a function f : X — Y is said to be strongly
e-closed if for each (z,y) € (X x Y)\G(f), there exist U € eO(X,x) and an
open set V in Y containing y such that (e-cl(U) x V)N G(f) = 0.

Lemma 5.4. The graph G(f) of a function f: X — Y is strongly e-closed if
and only if for each (z,y) € (X x Y)\G(f), there exist U € eO(X,x) and an
open set V in'Y containing y such that f(e-cl(U))NV = 0.

Theorem 5.5. If f : X — Y is st.f.e.c. and Y is Hausdorff, then G(f) is
strongly e-closed in X x Y.
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Proof. Tt is clear that f(z) # y for each (x,y) € (X x Y)\G(f). Since Y
is Hausdorff, there exist open sets V and W in Y containing f(z) and y,
respectively, such that VW = (). Since f is st.f.e.c., there exists U € eO(X, x)
such that f(e-cl(U)) C V. Thus, f(e-cl(U)) "W = () and then by Lemma 5.4,
G(f) is strongly e-closed in X x Y. O

6. Covering properties

Definition 6.1. A space X is said to be

(a) e-closed if every cover of X by e-open sets has a finite subcover whose
preclosures cover X

(b) countably e-closed if every countable cover of X by e-open sets has a
finite subcover whose preclosures cover X.

A subset A of a space X is said to be e-closed relative to X if for every cover
{Va : @ € A} of A by e-open sets of X, there exists a finite subset Ag of A such
that A C U{e-cl(V,) : o € Ag}.

Theorem 6.1. If f: X — Y is a st.0.e.c. function and A is e-closed relative
to X, then f(A) is a compact set of Y.

Proof. Let {V,, : @ € A} be a cover of f(A) by open sets of Y. For each point
x € A, there exists a(z) € A such that f(z) € V(). Since f is st.f.e.c., there
exists U, € eO(X,z) such that f(e-cl(U;)) C Vi(s). The family {U, : x € A}
is a cover of A by e-open sets of X and hence there exists a finite subset Ay
of A such that A C Ugea,e-cl(U,). Therefore, we obtain f(A) C Uzea,Va(a)-
This shows that f(A) is compact. O

Corollary 6.2. Let f : X — Y be a st.0.e.c. surjection. Then the following
properties hold:

(a) If X is e-closed, then Y is compact,

(b)If X is countably e-closed, then'Y is countably compact.

Theorem 6.3. If a function f : X — Y has a strongly e-closed graph, then
f(A) is closed in'Y for each subset A which is e-closed relative to X.

Proof. Let A be e-closed relative to X and y € Y\ f(A). Then for each z € A
we have (z,y) ¢ G(f) and by Lemma 5.4 there exist U, € eO(X,x) and an
open set V, of Y containing y such that f(e-cl(U,)) NV, = (. The family
{Uy : x € A} is a cover of A by e-open sets of X. Since A is e-closed relative
to X, there exists a finite subset Ay of A such that A C U{e-cl(Uy;) : € Ao}.
Put V=n{V, :z € Ap}. Then V is an open set containing y and f(A)NV C
[Uzea, fle-cl(U))] NV C Ugea,[f(e-cl(Uy)) N V] = (. Therefore, we have
y ¢ cl(f(A)) and hence f(A) is closed in Y. O

Theorem 6.4. Let X be a submaximal extremally disconnected space. If a
function f: X — Y has a strongly e-closed graph, then f~'(A) is 0-closed in
X for each compact set A of Y.
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Proof. Let A be a compact set of Y and = ¢ f~!(A). Then for each y € A
we have (z,y) ¢ G(f) and by Lemma 5.4 there exist U, € eO(X,z) and an
open set V, of Y containing y such that f(e-cl(U,)) NV, = 0. The family
{V}y 1y € A} is an open cover of A and there exists a finite subset Ay of A such
that A C Uyea,Vy. Since X is submaximal extremally disconnected, each U,
is open in X and e-cl(Uy) = cl(Uy). Set U = Nyea,Uy, then U is an open set
containing x and

F(AU)) MA C Uz, [f(l(U)) NV,] C Usea, [f(e-cl(Uy)) N V,] = 0.

Therefore, we have cl(U) N f~1(A) = () and hence x ¢ clg(f~*(A)). This shows
that f~1(A) is f-closed in X. O

Corollary 6.5. Let X be a submazimal extremally disconnected space andY be
a compact Hausdorff space. For a function f: X — Y, the following properties
are equivalent:

(a) f is st.h.e.c.,

(b) G(f) is strongly e-closed in X XY,
(c) f is strongly 0-continuous,
(d) f is continuous,
(e) f is e-continuous.

Proof. (a) = (b). It follows from Theorem 5.5.
(b) = (c). It follows from Theorem 6.4.
(¢) = (d) = (e). These are obvious.

(e) = (a). Since Y is regular, it follows from Theorem 4.7. O
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