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FOURIER TRANSFORM AND
Lp-MIXED PROJECTION BODIES

Lijuan Liu, Wei Wang, and Binwu He

Abstract. In this paper we define the Lp-mixed curvature function of
a convex body. We develop a formula connection the support function
of Lp-mixed projection body with Fourier transform of the Lp-mixed
curvature function. Using this formula we solve an analog of the Shephard
projection problem for Lp-mixed projection bodies.

1. Introduction

As usual, voli(·) denotes the i-dimensional Lebesgue measure and Sn−1 de-
notes the unit sphere in Rn. Let Bn be the origin-symmetric standard unit ball
in Rn, and write ωn for voln(Bn). Note that

ωn = π
n
2 /Γ(1 +

n

2
)

defines ωn for all non-negative real n (not just the positive integers).
The Shephard problem states as follows: Let K and L be origin-symmetric

convex bodies in Rn. Suppose that, for every θ ∈ Sn−1,

voln−1(K|θ⊥) ≤ voln−1(L|θ⊥).

Does it follow that
voln(K) ≤ voln(L)?

This problem was solved independently by Petty [13] and Schneider [15], who
showed that the answer is affirmative if n ≤ 2 and negative if n ≥ 3. It is also
well-known ([16] pp. 422–423), that the Shephard problem has an affirmative
answer if L is a projection body, i.e., if ∀θ ∈ Sn−1

(1.1) hL(θ) = voln−1(K|θ⊥) =
1
2

∫

Sn−1
|θ · u|dS(K,u)
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for some convex body K. Here S(K, ·) is the surface area measure (see [1]),
and hL(x) = max{x · y : y ∈ L} is the support function of L. On the other
hand, the existence of a convex body, which is not a projection body leads, to
a counterexample. Thus the concept of the projection body represents one of
the crucial steps in the solution of the Shephard problem.

Lutwak, Yang, and Zhang based on the classical projection body, first intro-
duced the notion of Lp-projection body (see [11]). Let ΠpK, p ≥ 1 denote the
compact convex symmetric set whose support function is given by

(1.2) h(ΠpK, θ)p =
1

nωncn−2,p

∫

Sn−1
|θ · u|pdSp(K, u),∀θ ∈ Sn−1,

where

cn,p =
ωn+p

ω2ωnωp−1
.

Here Sp(K, ·) is the Lp-surface area measure, and its definition can be seen
in [9] due to the Lp-Brunn-Minkowski Theory. A convex body M is called
Lp-projection body if there is a convex body K such that M = ΠpK.

Projection body and intersection body are two basic concepts in geometric
tomography. Since Koldobsky found the Fourier analytic characterization of
intersection bodies, the Fourier analytic approach to Busemann-Petty problem
has recently been developed and has led to many results (see [2, 5, 6, 7, 12,
17]). As the duality to intersection body, Koldobsky, Ryabogin, and Zvavitch
[8] characterized the projection body with the Fourier transform. Moreover,
Ryabogin and Zvavitch [14] proved that if the surface area measure of a convex
body K is absolutely continuous, then

(1.3) h(ΠpK, ξ)p =
nωncn−2,p

4πCp

̂fp(K, ·)(ξ).

Here p ≥ 1, p is not an even integer, fp(K, ·) is the Lp-curvature function of
the body K, and Cp is a constant depending only on p. Using this formula,
Ryabogin and Zvavitch considered the Shephard problem for Lp-projection
bodies as follows.

Let K and L be origin-symmetric convex bodies in Rn and p ≥ 1. Suppose

ΠpK ⊆ ΠpL.

Does it follow that

voln(K) ≤ voln(L) for 1 ≤ p < n

and

voln(K) ≥ voln(L) for p > n?

By using the Fourier transform analytic approach, they generalized the Shep-
hard problem for Lp-projection body as follows:
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Theorem A. Let K and L be origin-symmetric convex bodies in Rn and p ≥
1, p 6= n, p is not an even integer. Suppose that the support function hL is
infinitely smooth and the functions Cpĥ

p
L(θ) ≥ 0 for all θ ∈ Sn−1. If

ΠpK ⊆ ΠpL,

then
voln(K) ≤ voln(L) for 1 ≤ p < n,

and
voln(K) ≥ voln(L) for p > n.

Theorem B. Let K be an origin-symmetric convex body in Rn and p ≥ 1, p 6=
n, p is not an even integer. If the curvature function fK is positive on Sn−1

and Cpĥ
p
K(θ) is negative on an open subset of Sn−1, then there exists a convex

body D so that
ΠpK ⊆ ΠpD,

but
voln(K) > voln(D) for 1 ≤ p < n

and
voln(K) < voln(D) for p > n.

At the same time, if p is an even integer, Ryabogin and Zvavitch showed
the answer to the Shephard problem for Lp-projection bodies is negative by
perturbing a convex body.

The main object of this article is the ith Lp-mixed projection body Πp,iK.
Let Πp,iK, i = 0, 1, . . . , n − 1, p ≥ 1, denote the compact convex set whose
support function is given by

(1.4) h(Πp,iK, θ)p =
1

nωncn−2,p

∫

Sn−1
|θ · u|pdSp,i(K, u), ∀θ ∈ Sn−1.

Here Sp,i(K, ·) is the ith Lp-mixed surface area measure with n− i− 1 copies
of K and i copies of B. More precisely, the Borel measure Sp,i(K, ·) on Sn−1,
is defined by ([9])

Sp,i(K,ω) =
∫

ω

h1−p
K (u)dSi(K,u)

for each Borel ω ⊂ Sn−1. If i = 0, Sp,i(K, ·) is just Sp(K, ·). A convex body
M is called the ith Lp-mixed projection body if there is a convex body K such
that M = Πp,iK. Obviously, Πp,0K = ΠpK.

In this article, we consider the more general Shephard projection problem:

Shephard problem for Lp-mixed projection bodies. Let K and L be
origin-symmetric convex bodies in Rn and i = 0, 1, . . . , n− 1, p ≥ 1. Suppose

Πp,iK ⊆ Πp,iL.

Does it follow that

Wi(K) ≤ Wi(L) for 1 ≤ p < n− i
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and
Wi(K) ≥ Wi(L) for p > n− i?

By using the Fourier analytic formula for Lp-mixed projection body, we will
generalize Theorem A and Theorem B, respectively.

Theorem 1. Let K and L be origin-symmetric convex bodies in Rn, i =
0, 1, . . . , n− 1 and p ≥ 1, p 6= n− i, p is not an even integer. Suppose that the
support function hL is infinitely smooth and the functions Cpĥ

p
L(θ) ≥ 0 for all

θ ∈ Sn−1. If
Πp,iK ⊆ Πp,iL,

then
Wi(K) ≤ Wi(L) for 1 ≤ p < n− i

and
Wi(K) ≥ Wi(L) for p > n− i.

Theorem 2. Let K be an origin-symmetric convex body in Rn, and i =
0, 1, . . . , n − 1, p ≥ 1, p 6= n − i, p is not an even integer. If the mixed
curvature function fi(K, ·) is positive on Sn−1 and Cpĥ

p
K(θ) is negative on an

open subset of Sn−1, then there exists a convex body D so that

Πp,iK ⊆ Πp,iD,

but
Wi(K) > Wi(D) for 1 ≤ p < n− i

and
Wi(K) < Wi(D) for p > n− i.

2. Notation and preliminaries

2.1. Fourier transform and Parseval’s formula

Koldobsky’s book [7] is an excellent general reference for the Fourier trans-
form. Some basic notions and the background material are required. As usual,
we denote by S(Rn) the space of rapidly decreasing infinitely differentiable test
functions on Rn, and by S′(Rn) the space of distributions over S(Rn). The
Fourier transform f̂ of a distribution f ∈ S′(Rn) is defined by 〈f̂ , φ〉 = 〈f, φ̂〉
for every test function φ, where

(2.1) φ̂(y) =
∫

φ(x) exp(−i〈x, y〉)dx.

A distribution f is called even homogeneous of degree p ∈ R if 〈f, φ(·/α)〉 =
|α|n+p〈f, φ〉 for every α ∈ R, α 6= 0. The Fourier transform of an even homo-
geneous distribution of degree p is an even homogeneous distribution of degree
−n − p. A distribution f is called positive if 〈f, φ〉 ≥ 0 for every φ ≥ 0,
implying that f is necessarily a non-negative Borel measure on Rn. We use
Schwartz’s generalization of Bochner’s theorem (see [4]) as a definition, and
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call a homogeneous distribution positive definite if its Fourier transform is a
positive distribution.

Let K and L be infinitely smooth origin-symmetric star bodies in Rn, and
let 0 < p < n. Then a version of Parseval’s formula on the sphere ([7] p. 66)
can be expressed by

(2.2)
∫

Sn−1
(‖ · ‖−p

K )∧(θ)(‖ · ‖−n+p
L )∧(θ)dθ=(2π)n

∫

Sn−1
‖ θ ‖−p

K ‖ θ ‖−n+p
L dθ.

Let µ be a finite Borel measure on the unit sphere Sn−1. We extend µ to
a homogeneous distribution of degree −n− p. A distribution µp,e is called the
Lp extended measure of µ if, for every even test function φ ∈ S(Rn),

(2.3) 〈µp,e, φ〉 =
∫

Sn−1
〈r−1−p

+ , φ(rξ)〉dµ(ξ).

In most cases we are only interested in even test functions supported outside
of the origin, for which

(2.4) 〈r−1−p
+ , φ(rξ)〉 =

∫

R
r−1−p
+ φ(rξ)dr =

1
2

∫

R
|r|−1−pφ(rξ)dr

(see [3]) for the general definition of 〈r−1−p
+ , φ(rξ)〉.

If µ is absolutely continuous with density g ∈ L1(Sn−1), we define the
extension g(x), x ∈ Rn\{0} as a homogeneous function of degree −n − p :
g(x) = |x|−n−pg(x/|x|), and identify µ̂p,e with ĝ.

2.2. Lp-mixed curvature functions and Lp-mixed quermassintegrals

The setting for this paper is n-dimensional Euclidean space Rn. Let Kn

denote the set of convex bodies (compact, convex subsets with non-empty inte-
riors) in Rn. For the set of convex bodies containing the origin in their interiors
in Rn, we write Kn

0 .
For K,L ∈ Kn, and ε > 0, the Minkowski linear combination K + εL ∈ Kn

is defined by ([1])

(2.5) h(K + εL, ·) = h(K, ·) + εh(L, ·).
For K, L ∈ Kn

0 , and ε > 0, the Firey Lp-combination K +p ε · L ∈ Kn
0 is

defined by ([9])

(2.6) h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p,

where “ · ” in ε · L denotes the Firey scalar multiplication, i.e., ε · L = ε
1
p L.

If K,L ∈ Kn
0 in Rn, then for p ≥ 1, the Lp-mixed volume Vp(K, L) of K and

L is defined by ([9])

(2.7)
n

p
Vp(K,L) = lim

ε→0+

V (K +p ε · L)− V (K)
ε

.
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Corresponding to each K ∈ Kn
0 , there is a positive Borel measure Sp(K, ·)

on Sn−1 such that ([9])

(2.8) Vp(K,L) =
1
n

∫

Sn−1
h(L, u)pdSp(K,u)

for each L ∈ Kn
0 . The measure Sp(K, ·) is just the Lp-surface area measure of

K, which is absolutely continuous with respect to classical surface area measure
S(K, ·), and has Radon-Nikodym derivative

(2.9)
dSp(K, ·)
dS(K, ·) = h(K, ·)1−p.

A convex body K ∈ Kn is said to have a Lp-curvature function (see [10])
fp(K, ·) : Sn−1 → R, if its Lp-surface area measure Sp(K, ·) is absolutely con-
tinuous with respect to spherical Lebesgue measure S and the Radon-Nikodym
derivative

(2.10)
dSp(K, ·)

dS
= fp(K, ·).

The mixed quermassintegral Wi(K, L) with n − i − 1 copies of K, i copies
of Bn (i = 0, 1, . . . , n− 1) is defined by ([9])

(2.11) (n− i)Wi(K, L) = lim
ε→0+

Wi(K + εL)−Wi(K)
ε

.

For K ∈ Kn and i = 0, 1, . . . , n − 1 there exists a regular Borel measure
Si(K, ·) on Sn−1(see [9] or [15]), such that the mixed quermassintegral Wi(K, L)
has the following integral representation:

(2.12) Wi(K,L) =
1
n

∫

Sn−1
h(L, u)dSi(K,u)

for all L ∈ Kn. As a general reference for the mixed surface area measure we
recommend the article by Lutwak [9]. From the fact that Si(K, ·) is generated
only by i copies of Bn and (n− 1− i) copies of K, we know that the measure
Sn−1(K, ·) is independent of the body K, and is just ordinary Lebesgue measure
S on Sn−1. In fact, the ith surface area measure of the unit ball, Si(Bn, ·) = S
for all i. The surface area measure S0(K, ·) will frequently be written simply as
S(K, ·). If ∂K is a regular C2-hypersurface with everywhere positive principal
curvatures, then S(K, ·) is absolutely continuous with respect to S, and the
Radon-Nikodym derivative is

(2.13)
dS(K, ·)

dS
= f(K, ·).

Suppose that R is the set of real numbers. A convex body K ∈ Kn is said
to have a continuous ith curvature function fi(K, ·) : Sn−1 → R, if its mixed
surface area measure Si(K, ·) is absolutely continuous with respect to spherical
Lebesgue measure S and the Radon-Nikodym derivative

(2.14)
dSi(K, ·)

dS
= fi(K, ·).
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For K, L ∈ Kn
0 and p ≥ 1, i = 0, 1, . . . , n− 1, the Lp-mixed quermassintegral

Wp,i(K, L) with n− i− 1 copies of K, i copies of B is defined by ([9])

(2.15)
n− i

p
Wp,i(K, L) = lim

ε→0+

Wi(K +p ε · L)−Wi(K)
ε

.

Moreover, Lutwak [9] proved there exists a regular Borel measure Sp,i(K, ·),
such that the Lp-mixed quermassintegral Wp,i(K, L) has the following integral
representation:

(2.16) Wp,i(K,L) =
1
n

∫

Sn−1
h(L, u)pdSp,i(K, u)

for all L ∈ Kn
0 . And the measure Sp,i(K, ·) is absolutely continuous with respect

to Si(K, ·), and has Radon-Nikodym derivative

(2.17)
dSp,i(K, ·)
dSi(K, ·) = h(K, ·)1−p.

Of course

(2.18) Sp,0(K, ·) = Sp(K, ·),

(2.19) S1,i(K, ·) = Si(K, ·),

(2.20) S1,0(K, ·) = S(K, ·).

For K,L ∈ Kn
0 and p ≥ 1, i = 0, 1, . . . , n−1, the Lp-mixed curvature function

fp,i(K, ·) is defined by

(2.21) fp,i(K, ·) =
dSp,i(K, ·)

dS
.

If the mixed surface area measure Si(K, ·) is absolutely continuous with
respect to spherical Lebesgue measure S, we have

(2.22) fp,i(K, u) = fi(K,u)h(K,u)1−p.

Obviously, from (2.10), (2.13), (2.14), (2.18), (2.19) and (2.20), we have that

(2.23) fp,0(K, u) = fp(K, u),

(2.24) f1,i(K, u) = fi(K, u),

(2.25) f1,0(K,u) = f(K,u).
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3. Shephard problem for Lp-mixed projection bodies

In order to prove our main results, the following results are required.

Lemma 3.1 ([14]). Let p > −1, p 6= 2k, k ∈ N ∪ {0}. For every θ ∈ Sn−1,

(3.1) µ̂p,e(θ) =
1

4πCp

∫

Sn−1
|θ · y|pdµ(y),

where the constant

Cp =
2p+1

√
πΓ((p + 1)/2)
Γ(−p/2)

is positive for each p ∈ (4k − 2, 4k) and negative for each p ∈ (4k, 4k + 2).

Lemma 3.2 ([9]). If K, L ∈ Kn
0 , i = 0, 1, . . . , n− 1 and p > 1, then

(3.2) Wp,i(K, L)n−i ≥ Wi(K)n−i−pWi(L)p,

with equality if and only if K and L are dilates.

The following statement follows from (1.4) and Lemma 3.1.

Lemma 3.3. Let p ≥ 1, p is not an even integer and i = 0, 1, . . . , n− 1. Then
for every θ ∈ Sn−1,

(3.3) ̂Sp,i(K, ·)(θ) =
nωncn−2,p

4πCp
h(Πp,iK, θ)p,

where Cp is as above. In particular, if Sp,i(K, ·) is absolutely continuous with
respect to the spherical Lebesgue measure, then

(3.4) ̂fp,i(K, ·)(θ) =
nωncn−2,p

4πCp
h(Πp,iK, θ)p.

Taking i = 0 to Lemma 3.3, we immediately obtain that:

Corollary 3.1 ([14]). Let p ≥ 1, p is not an even integral. If Sp(K, ·) is
absolutely continuous with respect to the spherical Lebesgue measure, then for
every θ ∈ Sn−1,

(3.5) ̂fp(K, ·)(θ) =
nωncn−2,p

4πCp
h(ΠpK, θ)p.

Theorem 3.1. Let K and L be origin-symmetric convex bodies in Rn, i =
0, 1, . . . , n−1 and p ≥ 1, p 6= n− i, p is not an even integer. If Πp,iK = Πp,iL,
then K = L.

Proof. Applying (1.4) and the uniqueness theorem of the Fourier transform,
we have Sp,i,e(K, ·) = Sp,i,e(L, ·). By homogeneity, Sp,i(K, ·) = Sp,i(L, ·) is the
same as Sp,i,e(K, ·) = Sp,i,e(L, ·). It remains to use the uniqueness property of
Lp-mixed surface area measures for p 6= n− i (see [9]). �

Remark 1. Taking p = 1, i = 0 to Theorem 3.1, it is just Aleksandrov’s projec-
tion theorem.
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Remark 2. In the case p = n − i and p is not an even integer, it follows that
Πn−i,iK = Πn−i,iL implies K and L are dilates. Theorem 3.1 is not true for
even values of p. Indeed, one can perturb Sp,i(K, ·) (i.e., to perturb a body K)
without changing h(Πp,iK, ξ) (see the following theorem).

Theorem 3.2. Let K be an origin-symmetric convex body in Rn, i = 0, 1, . . .,
n− 1 and p ≥ 1, p 6= n− i. If p is an even integer, then there exists an origin-
symmetric convex body L, such that Πp,iK = Πp,iL, but Wi(K) 6= Wi(L).

Proof. Then there exists a nonzero continuous even function g on Sn−1 such
that

(3.6)
∫

Sn−1
|x · ξ|pg(x)dx = 0, ξ ∈ Sn−1.

Indeed, if p = 2k, then |x · ξ|2k is a polynomial of degree 2k with coefficients
depending on ξ. So, it is enough to construct a nontrivial even function g,
satisfying

(3.7)
∫

Sn−1
xi1

1 xi2
2 · · ·xin

n g(x)dx = 0

for all integer power 0 ≤ ij ≤ 2k such that
∑n

j=1 ij = 2k.

Taking g(x) =
∑n

l=1 clx
2l
1 and solving the system of linear equations, one

can find a nontrivial solution c1, . . . , cm provided m is big enough.
Consider an origin-symmetric convex body K in Rn with a strictly positive

ith Lp-mixed curvature function (i.e., fp,i(K, ξ) > 0 for all ξ ∈ Sn−1). We may
assume that

(3.8)
∫

Sn−1
hp

K(ξ)g(ξ)dξ ≥ 0

(otherwise consider −g(ξ) instead of g(ξ)). Choose ε > 0 such that

(3.9) fp,i(K, ξ)− εg(ξ) > 0.

Then we may use the existence theorem for Lp-mixed curvature functions to
conclude that there exists an origin-symmetric convex body L in Rn such that

(3.10) fp,i(L, ξ) = fp,i(K, ξ)− εg(ξ).

Applying (1.4) and (2.21), we obtain that

h(Πp,iL, ξ)p =
1

nωncn−2,p

∫

Sn−1
|θ · ξ|pdSp,i(L, ξ)

=
1

nωncn−2,p

∫

Sn−1
|θ · ξ|pfp,i(L, ξ)dS(ξ)

=
1

nωncn−2,p

∫

Sn−1
|θ · ξ|pfp,i(K, ξ)dS(ξ)

− ε

nωncn−2,p

∫

Sn−1
|θ · ξ|pg(ξ)dS(ξ)
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=
1

nωncn−2,p

∫

Sn−1
|θ · ξ|pfp,i(K, ξ)dS(ξ)

=
1

nωncn−2,p

∫

Sn−1
|θ · ξ|pdSp,i(K, ξ)

= h(Πp,iK, ξ)p,

it is just to say

(3.11) Πp,iL = Πp,iK.

But

(3.12)

Wi(K) = Wp,i(K, K)

=
1
n

∫

Sn−1
hp

K(ξ)fp,i(K, ξ)dξ

=
1
n

∫

Sn−1
hp

K(ξ)fp,i(L, ξ)dξ +
ε

n

∫

Sn−1
hp

K(ξ)g(ξ)dξ

≥ 1
n

∫

Sn−1
hp

K(ξ)fp,i(L, ξ)dξ

= Wp,i(L,K).

From Lemma 3.2 and (3.12), we have

(3.13) Wi(K) ≥ Wp,i(L, K) ≥ Wi(K)
n−i−p

n−i Wi(L)
p

n−i .

So if Wi(K) = Wi(L), then there is an equality in (3.2) and then L and K are
dilates. This contradicts the construction of the body L. �

Remark 3. The proof of Theorem 3.2 is exact copy of a similar result which
was proved by Ryabogin and Zvavitch in [14]. If i = 0, Theorem 3.2 is just
their result.

Proof of Theorem 1. From Cp
̂fp,i(K, ·)(θ) ≤ Cp

̂fp,i(L, ·)(θ) and Cpĥ
p
L(θ) ≥

0, ∀ θ ∈ Sn−1, we get

(3.14)
∫

Sn−1
ĥp

L(θ) ̂fp,i(K, ·)(θ)dθ ≤
∫

Sn−1
ĥp

L(θ) ̂fp,i(L, ·)(θ)dθ = (∗).

Using Parseval’s formula on the sphere, one can have

(3.15)

(∗) = (2π)n

∫

Sn−1
hp

L(θ)fp,i(L, θ)dθ

= (2π)n

∫

Sn−1
hp

L(θ)dSp,i(L, θ)

= n(2π)nWp,i(L,L)

= n(2π)nWi(L).
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But

(3.16)

∫

Sn−1
ĥp

L(θ) ̂fp,i(K, ·)(θ)dθ = (2π)n

∫

Sn−1
hp

L(θ)fp,i(K, θ)dθ

= n(2π)nWp,i(K, L).

Thus

(3.17) Wp,i(K, L) ≤ Wi(L).

Applying the Lemma (3.2), we get

(3.18) Wi(K)n−p−i ≤ Wi(L)n−p−i.

Finally

(3.19) Wi(K) ≤ Wi(L) for 1 ≤ p < n− i,

and

(3.20) Wi(K) ≥ Wi(L) for p > n− i. �

Proof of Theorem 2. Let Ω = {θ ∈ Sn−1 : Cpĥ
p
K(θ) < 0}. Consider a function

ν ∈ C∞(Sn−1) such that Cpν is a positive even function supported on Ω, ν is
not identically zero. We extend ν to a homogeneous function rpν(θ) of degree
p on Rn. Then the Fourier transform of rpν(θ) is a homogeneous function of
degree −n − p : r̂pν(θ) = r−n−pg(θ), where g is an infinitely smooth function
on Sn−1.

Since g is bounded on Sn−1 and fp,i(K, θ) = h1−p
K (θ)fi(K, θ) > 0, one can

choose a small ε > 0 so that, for every θ ∈ Sn−1 and r > 0,

(3.21) fp,i(L, rθ) = fp,i(K, rθ) + εr−n−pg(θ) > 0.

By Lutwak’s extension of the Minkowski’s existence theorem, fp,i(L, θ) defines
a convex body L ∈ Rn. By the definition of the function ν,

(3.22) Cp
̂fp,i(L, ·)(rθ) = Cp

̂fp,i(K, ·)(rθ) + εCpν(θ) ≥ Cp
̂fp,i(K, ·)(rθ).

Next, since Cpν is supported and is positive in the set where Cpĥ
p
K < 0,

(3.23)

∫

Sn−1
ĥp

K(θ) ̂fp,i(L, ·)(θ)dθ

=
∫

Sn−1
ĥp

K(θ) ̂fp,i(K, ·)(θ)dθ +
∫

Sn−1
ĥp

K(θ)εν(θ)dθ

<

∫

Sn−1
ĥp

K(θ) ̂fp,i(K, ·)(θ)dθ = (∗).
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Now the Parseval’s formula gives

(3.24)

(∗) = (2π)n

∫

Sn−1
hp

K(θ)fp,i(K, θ)dθ

= (2π)n

∫

Sn−1
hp

K(θ)dSp,i(K, θ)

= n(2π)nWp,i(K, K) = n(2π)nWi(K).

And

(3.25)

∫

Sn−1
ĥp

K(θ) ̂fp,i(L, ·)(θ)dθ = (2π)n

∫

Sn−1
hp

K(θ)fp,i(L, θ)dθ

= (2π)n

∫

Sn−1
hp

K(θ)dSp,i(L, θ)

= n(2π)nWp,i(L,K).

Thus

(3.26) Wp,i(L, K) < Wi(K).

As in the previous lemma, this implies

(3.27) Wi(L) < Wi(K) for 1 ≤ p < n− i,

and

(3.28) Wi(L) > Wi(K) for p > n− i. �

Taking p = 1 to Theorem 1 and Theorem 2, respectively, we obtain:

Corollary 3.2. Let K and L be origin-symmetric convex bodies in Rn, i =
0, 1, . . . , n−1. Suppose that the support function hL is infinitely smooth and the
functions ĥL(θ) ≤ 0 for all θ ∈ Sn−1. If ΠiK ⊆ ΠiL, then Wi(K) ≤ Wi(L).

Corollary 3.3. Let K be an origin-symmetric convex body in Rn, and i =
0, 1, . . . , n− 1. If the mixed curvature function fi(K, ·) is positive on Sn−1 and
ĥK(θ) is positive on an open subset of Sn−1, then there exists a convex body D
so that ΠiK ⊆ ΠiD, but Wi(K) > Wi(D).

Acknowledgment. We are grateful to the referees for the suggested improve-
ments.
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