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SETS OF UNIQUENESS, WEAKLY SUFFICIENT SETS
AND SAMPLING SETS FOR A−∞(B)

Le Hai Khoi

Abstract. We study a relationship between sets of uniqueness, weakly
sufficient sets and sampling sets in the space A−∞(B) of holomorphic
functions with polynomial growth on the unit ball of Cn (n ≥ 1).

1. Introduction

Let O(B), B being the open unit ball in Cn for some integer n ≥ 1, denote
the set of holomorphic functions defined on B, with the usual compact-open
topology. The space A−∞ = A−∞(B) of holomorphic functions on B with the
polynomial-growth condition, is defined as follows

A−∞(B) :=
{

f ∈ O(B) : ∃p, C > 0, sup
z∈B

(1− |z|)p|f(z)| ≤ C

}
.

As is well known, A−∞ is the smallest algebra of holomorphic functions that
contains the class H∞ of bounded holomorphic functions and is closed under
differentiation.

It should be noted that the space A−∞(B) has been studied intensively
by many mathematicians (C. A. Horowitz, B. Korenblum, B. Pinchuk; X.
Massaneda; J. Ortega; P. Thomas, J. Bonet, P. Domański, etc - see refer-
ences). Most work concentrated on interpolating sequences, and for the one-
dimensional case A−∞(D), also on sampling sets.

The goal of this article is to study relationship between various sets, such as
sets of uniqueness, weakly sufficient sets and sampling sets, in the space A−∞.
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2. Basic definitions

2.1. Weakly sufficient sets

Let f ∈ O(B). Let p be a positive real number. Define

‖f‖p := sup
z∈B

(1− |z|)p|f(z)|,

and

A−p = A−p(B) := {f ∈ O(B) : ‖f‖p < +∞}.
Notice that

A−∞ =
⋃
p>0

A−p.

We can endow A−∞ with a topological structure, namely the internal in-
ductive limit of spaces {(A−p, ‖ ‖p) : p > 0} and denote it by

(A−∞, τ) = lim−→
p>0

(A−p, ‖ ‖p), or briefly, (A−∞, τ) = lim ind A−p.

Now let S be a subset of B. Define

‖f‖p,S := sup
z∈S

(1− |z|)p|f(z)|

and

A−p,S = A−p,S(B) := {f ∈ A−∞ : ‖f‖p,S < +∞}.
Notice that ‖ ‖p,S is in general a semi-norm, and that the inclusion relations
A−p ⊂ A−p,S ⊂ A−∞ hold. Hence, it follows immediately that

A−∞ =
⋃
p>0

A−p ⊂
⋃
p>0

A−p,S ⊂ A−∞

and consequently that

A−∞ =
⋃
p>0

A−p =
⋃
p>0

A−p,S .

Moreover, it is obvious that A−p ↪→ A−p,S (here and in a sequel the sym-
bol ↪→ denotes a continuous imbedding). Therefore, for an arbitrarily given
subset S ⊂ B, one can construct on A−∞ another (weaker, and in fact strictly
weaker in many cases) internal inductive limit topology from the sequence
(A−p,S , ‖ ‖p,S) of vector spaces equipped with the semi-norms. Namely,

(A−∞, τS) = lim−→
p>0

(A−p,S , ‖ ‖p,S), or briefly, (A−∞, τS) = lim ind A−p,S .

Definition 2.1. A subset S ⊂ B is said to be a weakly sufficient set for the
space A−∞(B) if two topologies τ and τS are equivalent.
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Therefore it is quite surprising that there is a discrete subset S of B which
is weakly sufficient, for instance.

In our previous paper [3] we gave the presentation of an explicit method,
even an “algorithm”, for the construction of countable, weakly sufficient sets
for A−∞ for every n ≥ 1. In fact, it was considered a more general case than
the unit ball, namely, for a bounded domain with C1 smooth boundary. This
is the starting point of our investigation on various sets in the space A−∞.

2.2. Sets of uniqueness

Furthermore, in function spaces there is a quite well-known notion of a set
of uniqueness. For the space A−∞ it can be defined as follows.

Definition 2.2. A subset S ⊂ B is called a set of uniqueness for A−∞(B) if
f ∈ A−∞ and f(z) = 0 for all z ∈ S imply that f = 0.

Thus sets of uniqueness are precisely those sets which are not subsets of
zero-sets for A−∞. Below we can see that the uniqueness property is necessary
for a set to be weakly sufficient in A−∞.

2.3. Sampling sets

We notice that in the one-dimensional case the so-called sampling sets in
the space A−∞(D), D being the open unit disc in C, were introduced and
studied intensively by many people (see, e.g., [4], and references therein, also
[6], [2],. . . ). It seems that this notion is the same as for effective sets introduced
by Iyer in [5].

Inspiring by those works, for f ∈ A−∞, we consider

Tf = lim sup
|z|→1

log |f(z)|
| log(1− |z|)| .

If S is a subset of B, we define

Tf,S = lim sup
|z|→1
z∈S

log |f(z)|
| log(1− |z|)| .

It is obvious from the definition that Tf,S ≤ Tf for any S ⊂ B and f ∈ A−∞(B).
Our interest is on the question: for which subsets S of B the reverse inequality
can hold? In fact the following notion of sampling set has been studied for
some time.

Definition 2.3. A subset S of B is called a sampling set for A−∞(B), if the
equality Tf = Tf,S holds for every f ∈ A−∞(B).

In [6], the following implications in A−∞(D) were proven: the sampling
property implies the weak sufficiency property, and the weak sufficiency prop-
erty in turn implies uniqueness property. Examples showing that the converse
implications are not true were also provided.



936 LE HAI KHOI

It is of interest to study the relationship between sets of uniqueness, weakly
sufficient sets, and sampling sets in the space A−∞ for higher dimension.

From now on, instead of a family {p > 0}, we restrict ourselves to take
p ∈ N, i.e., the space A−∞(B) is the countable union of a sequence of Banach
spaces:

A−∞(B) =
∞⋃

p=1

A−p(B).

3. Weakly sufficient sets and sets of uniqueness

First we make some characterizations of the weakly sufficient sets and sets
of uniqueness in the space A−∞ that are needed in the sequel.

Proposition 3.1 (see [3]). For the space A−∞(B) the following statements are
equivalent:

(a) S is a weakly sufficient set, i.e., τS = τ .
(b) For every p > 0, there exists m = m(p) > 0 such that

(1) (A−p,S , ‖ ‖p,S) ↪→ (A−m, ‖ ‖m),

that is,

∀p > 0 ∃m = m(p), C = C(p) > 0 : ‖f‖m ≤ C‖f‖p,S , ∀f ∈ A−p,S .

(c) For every p > 0 there exist m = m(p) > 0 and C = C(p) > 0 such that

(2) ‖f‖m ≤ C‖f‖p,S , ∀f ∈ A−∞.

Also we note the following result.

Remark 3.2. For the space A−∞(B) the following statements are equivalent:
(a) S is a set of uniqueness.
(b) A−p,S is a normed space (for all p > 0).

Now we are able to prove the following relationship.

Proposition 3.3. Any weakly sufficient set for A−∞(B) is a set of uniqueness
for this space.

Proof. Let S ⊂ B be a weakly sufficient set for A−∞, i.e., (A−∞, τS) =
(A−∞, τ). If f ∈ A−∞ with f(z) = 0, ∀z ∈ S, then for any p > 0 we have

sup
z∈S

(1− | z|)p|f(z)| = 0,

which means that f ∈ A−p,S and ‖f‖p,S = 0, ∀p > 0. If A = (α) is a family of
seminorms defining a topology in (A−∞, τS), then since A−p,S ↪→ (A−∞, τS),
from ‖f‖p,S = 0, ∀p > 0 it follows that α(f) = 0, ∀α ∈ A. But two topologies
τS and τ are equivalent, the last equality shows that β(f) = 0, ∀β ∈ B,
where B = (β) is a family of seminorms defining a topology in (A−∞, τ), and
therefore, f = 0, by the fact that the space (A−∞, τ) is separated. �
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Here we note that Proposition 3.3 can also be proved by contradiction: if two
distinct functions coincide on S, it is easy to build a non convergent sequence
in A−∞ that always converges in the “S-topology”.

In general, a set of uniqueness for A−∞ is not necessarily weakly sufficient for
this space. However, it turns out that under some quite surprising conditions
the converse is true. Below we present the converse result, and moreover, in
two parts, the necessity, whose proof is quite simple, and the sufficiency which
requires a rather “delicate” proof.

3.1. The necessary conditions

Combining Propositions 3.1 and 3.3, we see that if S is a weakly sufficient
set for A−∞(B), then

(a) S is a set of uniqueness for this space.
(b) The following set-inclusion holds

(3) ∀p > 0 ∃m = m(p) > 0 : A−p,S ⊂ A−m.

Notice that in the one-dimensional case n = 1 the set-inclusion condition
(3) implies that S is a set of uniqueness for the space A−∞(D) (see [6]). It was
also proved that (3) implies the continuous imbedding, which means that this
condition is equivalent to the weak sufficiency of a set S.

3.2. Sufficient conditions

We now consider a question when a set of uniqueness will be weakly suffi-
cient. It turns out that the converse of the conditions above holds.

Theorem 3.4. Suppose that
(a) S is a set of uniqueness for A−∞(B), and
(b) the condition (3) holds, i.e., ∀p ∃m = m(p) : A−p,S ⊂ A−m.

Then S is a weakly sufficient set for A−∞(B).

Proof. Let Ks = {z ∈ B : |z| ≤ rs} where rs satisfies the conditions:
(i) 0 < rs < rt < 1 for 0 < s < t, and
(ii) lim

s→∞
rs = 1.

It is obvious that the family {Ks : s > 0} consists of compact subsets of the
unit ball B such that Ks ⊂⊂ Kt for 0 < s < t and

⋃
s>0 Ks = B.

By the second assumption of the theorem, take any p ≥ 1, then ∃m = m(p)
such that A−p,S ⊂ A−m. As A−m ⊂ A−(m+1), ∀m ≥ 1, without lost of
generality, we can consider that m ≥ p. It suffices, by Proposition 3.1, to prove
that A−p,S is imbedded continuously into some space A−q with q > m ≥ p.

Let Ep,S be the unit ball in A−p,S . Let q > m. Then q ≥ m + 1 ≥ p + 1.
Denote by Eq the unit ball in A−q, then as

sup
f∈Ep,S

‖f‖q ≤ sup
f∈Ep,S\Eq

‖f‖q + sup
f∈Eq

‖f‖q,
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we need only to prove that E = Ep,S \ Eq is bounded in the space A−q.

At this point we pause and prove the following result for the norm ‖f‖q.

Lemma 3.5. The ‖f‖q is attained on some compact subset Ks ⊂ B for all
f ∈ E.

Proof. Expecting a contradiction we suppose that the statement of the lemma
is not true. This means that

∀Ks ∃f ∈ E : sup
Ks

(1− |z|)q|f(z)| < ‖f‖q,

from which it follows that

(4) sup
B\Ks

(1− |z|)q|f(z)| ≥ ‖f‖q.

Our aim is to construct, employing the methods of [1] and [6], a function h
such that h ∈ A−q, but h /∈ A−(q−1). Moreover, this function is constructed in
the form of a series h(z) =

∑∞
k=1 ckhk(z), where hk ∈ E := { f

‖f‖q
; f ∈ E} will

be defined inductively as follows.
Take an arbitrary h1 ∈ E . If we have h1, . . . , hs−1 ∈ E (s ≥ 2), then hs is

determined in the following way.
- First, choose Ks ⊂ B large enough so that

(5) 1− |z| ≤ 1

3 · 4s+1

s−1∑

k=1

‖hk‖q−1

, ∀z ∈ B \Ks.

- Next, for such a Ks, there is an fs ∈ E such that (4) is satisfied, and we
define hs(z) = fs(z)

‖fs‖q
∈ E .

Here we note that, by (4) there exists zs ∈ B \Ks such that

(6) (1− |zs|)q|fs(zs)| ≥ ‖fs‖q

2
.

Thus a sequence (hk) ⊂ E is defined. Taking ck = 4−k (k = 1, 2, . . .), for
h(z) =

∑∞
k=1 4−khk(z) we have

‖h‖q ≤
∞∑

k=1

1
4k
‖hk‖q =

∞∑

k=1

1
4k

< ∞,

which means that h ∈ A−q, and therefore, h ∈ A−∞.

On the other hand,

|h(zs)| =
∣∣∣∣∣
∞∑

k=1

1
4k

hk(zs)

∣∣∣∣∣(7)

≥
∣∣∣∣

1
4s

hs(zs)
∣∣∣∣−
∣∣∣∣∣∣

∞∑

k 6=s

1
4k

hk(zs)

∣∣∣∣∣∣
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≥ 1
4s
|hs(zs)| −

∞∑

k 6=s

1
4k
|hk(zs)|

=
1
4s
|hs(zs)| −

s−1∑

k=1

1
4k
|hk(zs)| −

∞∑

k=s+1

1
4k
|hk(zs)|.

Furthermore, we note the following estimations:
- By (6)

(8) |hs(zs)| = |fs(zs)|
‖fs‖q

≥ 1
2
(1− |zs|)−q.

- Also ∀k = 1, . . . , s− 1

|hk(zs)| =
{
(1− |zs|)q−1|hk(zs)|

}
(1− |zs|)−(q−1)(9)

≤ sup
z∈B

{
(1− |z|)q−1|hk(z)|} (1− |zs|)−(q−1)

= ‖hk‖q−1(1− |zs|)−(q−1).

- Similarly, ∀k ≥ s + 1

|hk(zs)| = {(1− |zs|)q|hk(zs)|} (1− |zs|)−q(10)

≤ sup
z∈B

{(1− |z|)q|hk(z)|} (1− |zs|)−q

= ‖hk‖q(1− |zs|)−q = (1− |zs|)−q

as ‖hk‖q = 1, ∀k ≥ 1.
Combining (8)-(10) we can continue (7) as follows

|h(zs)|

≥ 1
4s
· 1
2
(1− |zs|)−q −

s−1∑

k=1

1
4k
‖hk‖q−1(1− |zs|)−(q−1) −

∞∑

k=s+1

1
4k

(1− |zs|)−q

=

(
1

2 · 4s
−

∞∑

k=s+1

1
4k

)
· (1− |zs|)−q − (1− |zs|)−(q−1)

s−1∑

k=1

1
4k
‖hk‖q−1

=
1

6 · 4s
(1− |zs|)−q − (1− |zs|)−(q−1)

s−1∑

k=1

1
4k
‖hk‖q−1

≥ 1
6 · 4s

(1− |zs|)−(q−1)
(
3 · 4s+1

s−1∑

k=1

‖hk‖q−1

)− (1− |zs|)−(q−1)
s−1∑

k=1

‖hk‖q−1,

by (5), that is,

(11) |h(zs)| ≥ (1− |zs|)−(q−1)
s−1∑

k=1

‖hk‖q−1.
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As ‖hk‖q−1 ≥ ‖hk‖q = 1, ∀k ≥ 1, from (11) it follows that

‖h‖q−1 = sup
z∈B

(1− |z|)q−1|h(z)|

≥ (1− |zs|)q−1|h(zs)|

≥
s−1∑

k=1

‖hk‖q−1

≥ s− 1, ∀s ≥ 2,

which implies that ‖h‖q−1 = ∞. We have thus obtained that h ∈ A−∞, but
h /∈ A−(q−1).

Now turn back to the definition of the set E = Ep,S \ Eq. We see that if
f ∈ E, then ‖f‖p,S ≤ 1 and ‖f‖q > 1. Hence, for any g ∈ E = { f

‖f‖q
; f ∈ E}

we have ‖g‖p,S < 1. From this fact it follows that for the function h constructed
above, we have the following estimation

‖h‖p,S ≤
∞∑

k=1

1
4k
‖hk‖p,S ≤

∞∑

k=1

1
4k

< ∞,

which means that h ∈ A−p,S .

Thus h ∈ A−p,S , and h /∈ A−(q−1), while by the assumption of the theorem
A−p,S ⊂ A−m ⊂ A−(q−1) (as p ≤ m ≤ q − 1): a contradiction. The lemma is
proved. �

From Lemma 3.5 using the regularity property of the space A−∞ (see [3],
also [7], [10]) we can derive boundedness of Ep,S . Indeed, we have

∀f ∈ E : ‖f‖m = sup
z∈B

(1− |z|)m|f(z)| = sup
z∈Ks

(1− |z|)m|f(z)|

= sup
z∈Ks

{
(1− |z|)m+1|f(z)| · 1

(1− |z|)
}

(12)

≤ 1
(1− rs)

· sup
z∈Ks

(1− |z|)m+1|f(z)| ≤ 1
(1− rs)

· ‖f‖m+1.

The last inequality means that a set

(13)
{

f

‖f‖m+1

}

f∈E

is bounded in A−m, and therefore, it is a relatively compact subset in A−(m+1),
by the complete continuity of the imbedding of A−m into A−(m+1).

Furthermore, we have

(14) sup
f∈E

‖f‖m+1,S ≤ sup
f∈E

‖f‖p,S ≤ 1.
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Taking into account that S is a set of uniqueness for the space A−(m+1),
from the last two facts it follows that E is bounded in A−(m+1), and therefore,
is bounded in A−m, by (12).

Indeed, denote C = supf∈E ‖f‖m+1, which implies that there is a sequence
(fk) ⊂ E such that

(15) lim
k→∞

‖fk‖m+1 = C.

Also, by (13), for a sequence
(
fk/‖fk‖m+1

) ⊂ E ⊂ A−(m+1) there is a sub-
sequence (g` = fk`

/‖fk`
‖m+1) such that it converges to some element, denoted

by f̂ of A−(m+1).
As ‖g`‖m+1 = 1, ∀` ≥ 1, we get that ‖f̂‖m+1 = 1, too. This means that f̂

is a nonzero element in A−(m+1). Then, by the assumption of the theorem, S

is a set of uniqueness of the space A−(m+1) it holds ‖f̂‖m+1,S = C1 > 0.
Taking into account that

‖g` − f̂‖m+1,S ≤ ‖g` − f̂‖m+1 and lim
`→∞

‖g` − f̂‖m+1 = 0,

it follows that lim
`→∞

‖g` − f̂‖m+1,S = 0, too. Hence, for all ` big enough we have

(16) ‖g`‖m+1,S ≥ ‖f̂‖m+1,S

2
=

C1

2
.

On the other hand,

(17) ‖g`‖m+1,S =
∥∥∥∥

fk`

‖fk`
‖m+1

∥∥∥∥
m+1,S

=
‖fk`

‖m+1,S

‖fk`
‖m+1

≤ 1
‖fk`

‖m+1
,

by (14).
From (16)-(17) it follows that

‖fk`
‖m+1 ≤ 1

‖g`‖m+1,S
≤ 2

C1
.

Hence, by (15)

sup
f∈E

‖f‖m+1 = C = lim
`→∞

‖fk`
‖m+1 ≤ 2

C1
< ∞,

which means that E is bounded in A−(m+1).
Thus A−p,S ↪→ A−(m+2), and S is a weakly sufficient set for A−∞, by Propo-

sition 3.1. �

Thus we have proved the following result.

Theorem 3.6. A set S ⊂ B is weakly sufficient for A−∞(B) if and only if S
is a set of uniqueness for A−∞(B), and ∀p ∃m = m(p) : A−p,S ⊂ A−m.

In other words, Theorem 3.6 states that for a set of uniqueness in the space
A−∞, a set-inclusion implies a continuous imbedding.
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4. Sampling sets and weakly sufficient sets

In this section we study some questions on sampling sets and their relation-
ship to weakly sufficient sets.

4.1. A toy problem for the non-discrete case

First we prove that a union of concentric to B spheres forms a (non-discrete)
sampling set for the space A−∞. The “distances” between spheres are supposed
to satisfy some conditions.

Let 0 < (tk) ↑ 1 and

(18) lim
k→∞

| log(1− tk+1)|
| log(1− tk)| = 1.

Such sequences are abundant. For example, tk = 1 − 1
(k+1)α , α > 0, satisfies

that condition; also tk = 1− e−e
√

k

works, . . . .
Denote by

Sk = {z ∈ B : |z| = tk},
and let

S =
∞⋃

k=1

Sk.

Notice that for the case n = 1 in [4] it was proved that the condition (18) is
necessary and sufficient for the set S to be sampling for A−∞(D).

Following that method we can prove that in higher dimension the same union
works well, too.

Proposition 4.1. S is a sampling set for A−∞.

Proof. Let f ∈ A−∞(B), and let ε > 0 be given. Then from (18) as well as the
definition of Tf,S it follows that ∃N such that ∀k > N :

| log(1− tk+1)|
| log(1− tk)| < 1 + ε

and

sup
|z|=tk

log |f(z)|
| log(1− tk)| < Tf,S + ε.

Now for k > N and tk ≤ |z| < tk+1 we have

log |f(z)|
| log(1− |z|)| ≤ sup

|w|=tk+1

log |f(w)|
| log(1− tk)|

= sup
|w|=tk+1

log |f(w)|
| log(1− tk+1)| ·

| log(1− tk+1|
| log(1− tk)|

≤ (1 + ε) sup
|w|=tk+1

log |f(w)|
| log(1− tk+1)| ≤ (1 + ε)[Tf,S + ε].
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Since ε > 0 is arbitrary, from the last inequality it follows that Tf ≤ Tf,S for
every f ∈ A−∞(B), which means that S is sampling for A−∞(B). �

Question 4.2. Is the condition (18) necessary for S to be sampling for A−∞?

Furthermore, we can prove, in the same manner as in [6], that under a weaker
condition for (tk) the corresponding concentric set is weakly sufficient.

Proposition 4.3. Suppose that 0 < (tk) ↑ 1 satisfying the following condition

(19) lim sup
k→∞

| log(1− tk+1)|
| log(1− tk)| < ∞.

The concentric set

S̃ =
∞⋃

k=1

{z ∈ B : |z| = tk}

is weakly sufficient for the space A−∞(B).

Proof. Let

lim sup
k→∞

| log(1− tk+1)|
| log(1− tk)| = M.

For M1 > M there is k0 such that for any k > k0

1− tk+1 > (1− tk)M1 .

Let q be any natural number which is greater than the integral part of M1p,
for any f ∈ A−∞ and z such that |z| < tk0 we have

(1− |z|)q|f(z)| ≤ sup
|z|≤tk0

|f(z)|.

So to prove f ∈ A−q is suffices to show that (1 − |z|)q|f(z)| is bounded for
|z| ≥ tk0 . Indeed, let k be the unique integer such that tk < |z| ≤ tk+1. Then
we have

(1− |z|)q|f(z)| ≤ (1− tk)q sup
|z|=tk+1

|f(z)| ≤ (1− tk+1)p sup
|z|=tk+1

|f(z)| ≤ ||f ||p, eS .

This completes the proof. �

Question 4.4. Is the condition (19) necessary for S to be weakly sufficient for
A−∞?

Remark 4.5. We see that although the two concentric sets S and S̃ have the
same structure, they play, by different conditions imposed on the sequence
(tk), different roles for A−∞. In particular, the concentric sampling set S is
also weakly sufficient for the space A−∞.

This type of examples of weakly sufficient sets is in fact a particular case of
a general result about the implication “sampling” ⇒ “weak sufficiency” which
will be treated in the next subsection.
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4.2. Sampling property implies weak sufficiency

We now study a relationship between sampling and weakly sufficient sets.
First we prove that a weak sufficiency is necessary for a set to be sampling.

Proposition 4.6. Each sampling set for A−∞(B) is weakly sufficient for this
space.

Proof. Let S ⊂ B be a sampling set for the space A−∞. We prove that the two
conditions in Theorem 3.6 are satisfied.

• The first condition.
Suppose that f ∈ A−∞ and f(z) = 0 ∀z ∈ S. Then

TS(f) = lim sup
z∈S,|z|→1

log |f(z)|
| log(1− |z|)| = −∞.

As T (f) = TS(f) it follows that

T (f) = lim sup
z∈B,|z|→1

log |f(z)|
| log(1− |z|)| = −∞.

Then in particular T (f) is negative, which is all we need. There exists a
positive number a such that T (f) < −a. Hence there exists a positive δ such
that log |f(z)| ≤ a log(1− |z|) for all z such that |z| ≥ 1− δ.

Fix w ∈ B. Then for all r ≥ |w| we have |f(w)| ≤ sup|z|=r |f(z)| ≤ (1− r)a

when r ≥ 1− δ. Now let r tend to 1. We see that we must have |f(w)| = 0.
Thus if S is a sampling set for A−∞, then it is a set of uniqueness for A−∞.
• The second condition.

Now we prove that ∀p ∃m = m(p) : A−p,S ⊂ A−m.
Indeed, take and fix a natural number p ≥ 1. For an arbitrary element

f ∈ A−p,S we have

sup
z∈S

(1− |z|)p|f(z)| = ‖f‖p,S < ∞.

From this it follows that

TS(f) = lim sup
z∈S,|z|→1

log |f(z)|
| log(1− |z|)| ≤ p,

and therefore,

T (f) = lim sup
z∈B,|z|→1

log |f(z)|
| log(1− |z|)| ≤ p.

Hence,
sup

z∈B,|z|→1

(1− |z|)p+1|f(z)| < ∞,

that is, f ∈ A−(p+1), which means that A−p ⊂ A−(p+1).
Thus if S is a sampling set for A−∞, then it is a set of uniqueness for A−∞,

and ∀p ≥ 1 : A−p ⊂ A−(p+1). By Theorem 3.6, S is a weakly sufficient set for
the space A−∞. The proposition is proved. �
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4.3. Discrete sampling sets

We already showed that the concentric sets of the types S and S̃ are sampling
and weakly sufficient, respectively. Both examples are non-discrete sets. A
question arises: how about the existence of discrete sets?

As mentioned in Section 2, in [3] we gave an explicit way to construct a
countable weakly sufficient set for A−∞, for every n ≥ 1. We are now interested
in a question of existence of a discrete set which is sampling in this space.

It turns out that the algorithm mentioned above, under some modifications,
also provides an explicit construction of sampling sets. In this subsection we
present a method to “extract” from the concentric set a discrete sampling
subset. These results are obtained in spirit of works [4, 6] on similar sets in the
one-dimensional case.

Note that in the proof of Proposition 4.1 we did not use the fact that f ∈
A−∞(B). In this section we see that the polynomial growth property plays an
important role in passing to a discrete case.

We first outline some basic facts from [3] on construction of discrete weakly
sufficient sets in A−∞.

For 0 < t < 1 denote

St = {z ∈ B : |z| = t} and Mt(f) = sup
z∈St

|f(z)|.

Proposition 4.7. For any numbers 0 < a < b < 1 and any points z, w ∈ Sa,
if f ∈ O(B), then

|f(z)− f(w)| ≤ 2n
√

n|z − w|
b− a

Mb(f).

Consider a sequence 0 < (tk) ↑ 1 satisfying the following, rather natural in
comparison with (18), condition.

(20) lim
k→∞

1− tk+1

1− tk
= 1.

Such sequences are abundant. For example, tk = 1− 1
k+1 , tk = 1−e−k, . . . (k =

1, 2, . . .) work.

We notice that the condition (20) implies the condition (18). Indeed,

lim
k→∞

[ | log(1− tk+1)|
| log(1− tk)| − 1

]
= lim

k→∞

[
log(1− tk+1)
log(1− tk)

− 1
]

= lim
k→∞

[
log(1− tk+1)− log(1− tk)

log(1− tk)

]

= lim
k→∞

[
log 1−tk+1

1−tk

log(1− tk)

]

= 0
(
due to (20)

)
.
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In order to avoid complications, we shall use the notation Mk(f) and Sk in
place of Mtk

(f) and Stk
, respectively.

Take a sequence 0 < (tk) ↑ 1 with the aforementioned property. Further-
more, take a sequence of natural numbers (sk) ↑ ∞ so that

(21) lim
k→∞

1
sk(tk+1 − tk)

= 0.

Such sequences (sk) can easily be found.

Fix a natural number N0 ≥ 1. Then, on Sk with k = N0, N0 + 1, . . ., mark
mk points zk,j (j = 1, 2, . . . ,mk), which form a 1/sk-net on Sk.

We renumber these points {zk,j ; 1 ≤ j ≤ mk, k ≥ N0} under one sequence,
denoted by Λ =

(
λk

)∞
k=1

, writing first all points with k = N0, and then with
k = N0 +1, etc. Note that the meaning of a choice of the number N0 is only in
that the elements of Λ can be chosen in the ball B to be “arbitrarily far away”
from the origin.

Theorem 4.8. The sequence Λ =
(
λk

)∞
k=1

⊂ B constructed above is weakly
sufficient for the space A−∞(B).

As a countable set Λ =
(
λk

)
is a subset of the set S̃ in Proposition 4.3,

Theorem 4.8 shows how to extract from the weakly sufficient concentric set of
the type S̃ a countable subset that is weakly sufficient for the space A−∞.

This fact gives us an idea how to get a countable sampling subset from the
concentric sampling set of the type S in Proposition 4.1.

For this we choose a sequence of natural numbers (sk) ↑ ∞ so that the
following condition is satisfied.

(22) lim
k→∞

1
sk(tk+1 − tk)(1− tk+1)p

= 0 for any p > 0.

Note that this condition is quite stronger than the condition (21).
Such a sequence (sk), as was for the condition (21), can easily be found. For

example, starting from any sequence (ρk) of positive real numbers tending to
infinity, one can always construct

sk = the intergal part of
(

1
sk(tk+1 − tk)(1− tk+1)ρk

)
, k = 1, 2, . . .

This (sk) works for the condition (22), and in its turn, the condition (21) holds.
Then we can construct a weakly sufficient sequence Λ = (λk), that lies on

the concentric union S =
⋃ Sk, for the space A−∞(B).

We are going now to prove that this countable set is sampling for A−∞.

Notice that for each positive number p the quantity ‖f‖p =sup
z∈B

(1− |z|)p|f(z)|
can be rewritten as follows

‖f‖p = sup
0<t<1

Mt(f)(1− t)p.
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From this it follows that

(23) ∀ 0 < t < 1, Mt(f) ≤ ‖f‖p

(1− t)p
.

Assume that there exists f0 ∈ A−∞(B) such that Tf0,Λ < Tf0 . Take a, b such
that

Tf0,Λ < a < b < Tf0 .

This implies that

∃ ρ ∈ (0, 1) :
log |f0(z)|
| log(1− |z|)| < a, ∀ z ∈ Λ, |z| > ρ,

and

∀ ρ ∈ (0, 1), ∃ z′ ∈ B, |z′| > ρ :
log |f0(z′)|
| log(1− |z′|)| > b.

Thus the inequalities above can be rewritten as follows.

(24) ∃ ρ ∈ (0, 1) : |f0(z)| < 1
(1− |z|)a

, ∀ z ∈ Λ, |z| > ρ,

and

(25) ∀ ρ ∈ (0, 1) ∃ z′ ∈ B, |z′| > ρ : |f0(z′)| > 1
(1− |z′|)b

.

Our main procedure starts from these important points, conditions (24) and
(25).

- Step 1: By the condition (24)

(26) ∃ ρ1 ∈ (0, 1) : |f0(z)| < 1
(1− |z|)a

, ∀ z ∈ Λ, |z| > ρ1.

For such a ρ1, by the condition (25)

(27) ∃ z1 ∈ B, |z1| > ρ1 : |f0(z1)| > 1
(1− |z1|)b

.

Take the unique natural number k so that tk−1 ≤ |z1| < tk.

Since f0 ∈ A−∞ there exists a positive integer p0 such that f0 ∈ A−p0(B).
In this case

Mk+1(f0) ≤ ||f0||p0

(1− tk+1)p0
,

by (23).

Let wk ∈ Sk with |f0(wk)| = Mk(f0). Then by the construction of points
zk,j (j = 1, . . . , mk), there exists zk,j0 ∈ Sk such that |wk − zk,j0 | < 1

sk
.
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It then follows by Proposition 4.7 that

Mk(f0)− |f0(zk,j0)| = |f0(wk)| − |f0(zk,j0)|
≤ |f0(wk)− f0(zk,j0)|

≤ 2n
√

n|wk − zk,j0 |
tk+1 − tk

Mk+1(f0)

≤ 2n
√

nMk+1(f0)
sk(tk+1 − tk)

.

Hence,

Mk(f0) ≤ |f0(zk,j0)|+
2n
√

n

sk(tk+1 − tk)
Mk+1(f0).

Notice that zk,j0 ∈ Sk

⋂
Λ, thus one induces from (26) that

|f0(zk,j0)| <
1

(1− |zk,j0 |)a
=

1
(1− tk)a

.

Therefore,

|f0(wk)| ≤ 1
(1− tk)a

+
2n
√

n

sk(tk+1 − tk)
Mk+1(f0)

≤ 1
(1− tk)a

+
2n
√

n||f0||p0

sk(tk+1 − tk)(1− tk+1)p0
.

As tk−1 ≤ |z1| < tk, we can choose z2 ∈ Sk so that |f0(z1)| ≤ |f0(z2)|. Then
we arrive at

|f0(z2)| ≥ |f0(z1)| > 1
(1− |z1|)b

≥ 1
(1− tk−1)b

and

|f0(z2)| < |f0(wk)| ≤ 1
(1− tk)a

+
2n
√

n||f0||p0

sk(tk+1 − tk)(1− tk+1)p0
.

Thus we obtain the following inequalities

1
(1− tk−1)b

< |f0(z1)| ≤ |f0(z2)| ≤ 1
(1− tk)a

+
2n
√

n||f0||p0

sk(tk+1 − tk)(1− tk+1)p0
.

By the condition (22), the sequence
(

1
sk(tk+1−tk)(1−tk+1)p0

)
is bounded. There-

fore, from the last inequalities we get

1
(1− tk−1)b

≤ 1
(1− tk)a

+ C0

for some positive constant C0 depending on p0. Hence,
(

1
1− tk−1

)b−a

≤
(

1− tk−1

1− tk

)a

+ C0(1− tk−1)a.
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Thus we can find a natural number k, denoted in this Step 1 by k1 such that
(

1
1− tk1−1

)b−a

≤
(

1− tk1−1

1− tk1

)a

+ C0(1− tk1−1)a.

- Step 2: Consider the condition (25) for ρ2 ≥ |z2| in Step 1; do the same as
in Step 1, we see that there exists a corresponding z′1 with |z′1| > ρ2 such that
|f0(z′1)| > 1

(1−|z′1|)b .
Again take k so that tk−1 ≤ |z′1| < tk and we have z′2, |z′2| > ρ2 with

|f0(z′2)| ≥ |f0(z′1)| >
1

(1− |z′1|)b
≥ 1

(tk−1)b

and
|f0(z′2)| <

1
(1− |z′2|)a

≤ 1
(1− tk)a

+ C0.

At this Step 2, denote such k by k2, we notice that k2 can be chosen so that
k1 < k2, and we arrive at

(
1

1− tk2−1

)b−a

≤
(

1− tk2−1

1− tk2

)a

+ C0(1− tk2−1)a.

Now it is very important for us to notice that one can always repeat this
process, and end up with a monotonically increasing sequence (k`) of positive
integers diverging to infinity with

(28)
(

1
1− tk`−1

)b−a

≤
(

1− tk`−1

1− tk`

)a

+ C0(1− tk`−1)a.

Letting ` →∞ in (28), we then see that the left-hand-side diverges to infinity
(since b > a), but the right-hand-side converges to 1: a contradiction.

Thus we obtain the following result.

Theorem 4.9. The sequence Λ =
(
λk

)
constructed above, with (sk) satisfying

the condition (22), is sampling for the space A−∞(B).
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