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CONSISTENT AND ASYMPTOTICALLY NORMAL
ESTIMATORS FOR PERIODIC BILINEAR MODELS

Abdelouahab Bibi and Antony Gautier

Abstract. In this paper, a distribution free approach to the param-
eter estimation of a simple bilinear model with periodic coefficients is
presented. The proposed method relies on minimum distance estimator
based on the autocovariances of the squared process. Consistency and
asymptotic normality of the estimator, as well as hypotheses testing, are
derived. Numerical experiments on simulated data sets are presented to
highlight the theoretical results.

1. Introduction

Periodically varying components are characteristic of many practical time se-
ries situations, including economic, hydrological and meteorological ones. Data
of this type are frequently analyzed using a periodic autoregressive moving av-
erage (PARMA) model, defined by some linear dynamics which alternate in
a regular cycle because of periodic coefficients (see Gautier [7] for references
dealing with PARMA models). However, many real time series exhibit not only
nonstationary structure, but also nonlinear features (see Bibi [1]). Therefore,
bilinear time series models with time-varying parameters have been attracting
a great deal of interest in the recent statistical literature. Bibi [1] and Bibi
and Oyet [4] are references dealing with probabilistic properties and/or sta-
tistical inference for some subclasses of bilinear models with time-dependent
coefficients. Our attention here is focused on the class of bilinear models with
periodically varying coefficients. Bibi and Gautier [3] stated general results
aimed to provide Lp-properties (p ≥ 1) and the asymptotic behavior of mo-
ments estimates for strictly superdiagonal and completely bilinear process with
periodic coefficients of period s ∈ N

∗ = {1, 2, . . . }, denoted by PBL(0, 0, P, 1)s,
P ≥ 2, and defined for all υ ∈ {1, . . . , s} by

(1) Xt(υ) =
P∑

i=2

bi(υ)Xt(υ − i)εt(υ − 1) + εt(υ),
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where (εt)t∈Z is a sequence of uncorrelated random variables with E(εt) =
E(ε3t ) = 0, E(ε2t ) = 1 and E(ε4t ) < +∞. In the difference equation (1),
Xt(υ) refers to as the variable X during the υ-th ‘season’ or ‘regime’ of the
t-th year with period s; this means that Xt(υ) can also be written as Xst+υ

(respectively εt(υ) as εst+υ). The time-constant case (studied in Francq [6])
is obtained with s = 1. It is also worth noting that the process (Xt)t∈Z has
similar properties to those of an autoregressive conditionally heteroskedastic
(ARCH) process (see Bibi and Gautier [3]), which plays an important role in
financial econometrics, and thus can be used as a weak white noise in modelling
series having certain specifications. Some applications of the model (1) we
have in mind are, for instance, intra-year observations on most economic time
series with different dynamics, quarterly or monthly electrical consumption and
production functions being examples.

Based on Bibi and Gautier [3] and further extensions, the main purpose of
this paper is to consider the problem of estimating the model (1) with P = 2
and s = 2, i.e.,

(2) Xt(υ) = bυXt(υ − 2)εt(υ − 1) + εt(υ),

where υ ∈ {1, 2}, and (εt)t∈Z is an iid N (0, 1) process. The Gaussianity as-
sumption is only needed in order to facilitate technical computations involved
in the next sections, but the asymptotic results presented below still hold with-
out such an assumption. As mentioned before, one can notice that, for each
υ ∈ {1, 2}, we have

E
{
X2

t (υ) |Xt (υ − 2)
}

= 1 + b2υX
2
t (υ − 2) ,

which raises that the model (2) under consideration in this paper is condition-
ally heteroskedastic.

In this paper, we assume that all the random variables are defined on the
same probability space (Ω,=,P) and that εt and Xu are independent for all
u < t. The k × k identity matrix is denoted by I(k), the symbols ‘;’, ‘a.s.’
and ‘p limn→∞’ respectively mean convergence in law, almost surely and in
probability. The notation M¯m = M ¯· · ·¯M stands for the m-th Hadamard
product for any matrix M , M ′ denotes the transpose of M , and ‖·‖ denotes any
vectorial norm. The remainder of the paper is organized as follows. In Section
2, we give conditions ensuring existence of moments up to the p-th order (p ≥ 2)
for the process defined by (2) and the explicit form of the covariance function
of the squared process. Further details for the proofs given in this section can
be found in Bibi and Aknouche [2]. Section 3 presents results on asymptotic
inference. Hypotheses testing is considered in Section 4. The finite sample
properties are empirically evaluated in Section 5 by means of Monte Carlo
simulations. Section 6 concludes the paper.
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2. Existence of moments

Before dealing with the existence of moments for the model (2) and deriving
the covariance structures, it is convenient to represent (2) in a vectorial form
as follows. Let Xt = {Xt(1), Xt(2)}′, εt = {εt(1), εt(2)}′ and the 2× 2 random
matrix Φt = Φ

(
εt, εt−1

)
defined by its (i, j)-th components

(Φt)i,j = biεt(i− 1)I{i=j},

where I∆ denotes the indicator function of set ∆. With these notations, we
obtain the following generalized autoregressive representation for (2):

(3) Xt = Φt Xt−1 + εt.

Such representation is potentially useful for deriving probabilistic properties
for (Xt)t∈Z.

2.1. Stationarity of the vector process

Define the operator norm for any matrix A by

‖A‖op = sup
x 6=0

‖Ax‖
‖x‖

and the top-Lyapunov exponent by

γL = inf
t>0

E


1
t

log

∥∥∥∥∥
t−1∏

i=0

Φt−i

∥∥∥∥∥
op




when E(log+ ‖Φ0‖op) < +∞, where log+ x = max{log x, 0} for x > 0. It
follows from the subadditive ergodic theorem that

(4) γL = lim
t→∞





1
t

log

∥∥∥∥∥
t−1∏

i=0

Φt−i

∥∥∥∥∥
op



 a.s.

We call causal any solution of (3) such that Xt is measurable with respect
to the σ-field generated by {εu, u ≤ t}. We have the following results.

Theorem 1. Consider the process (2) and let (Xt)t∈Z be the associated vec-
torial process. Then, γL < 0 is a sufficient condition for (3) to have a unique,
causal, strictly stationary and ergodic solution given by

(5) Xt =
∑

k≥0

Πk(t)εt−k,

where the above series converges a.s. and {Πk(t)}k≥1 are random matrices
given by

Πk(t) =
k−1∏

j=0

Φt−j

with, as usual, products over empty sets equal to I(2).
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Remark 1. By the strong law of large numbers and Jensen’s inequality, it is
straightforward to show that γL ≤ log |b1b2|. Hence, if |b1b2| < 1, then for all
t ∈ Z, the series (5) converges a.s. and constitutes the unique strictly stationary
and ergodic solution of the equation (3). However, the existence of explosive
regimes (i.e., regimes with |bυ| ≥ 1) does not preclude the strict stationarity.

Remark 2. The top-Lyapunov exponent criterion seems difficult to be obtained
explicitly. However a potential method to verify whether γL < 0 or not is via
Monte Carlo simulations using the equation (4). This fact heavily limits the
interests on the criterion in statistical applications. Indeed, the solution needs
to have some moments to make an estimation theory possible and the top-
Lyapunov criterion does not guarantee the existence of such moments.

Remark 2 leads to search for conditions on (bυ)υ=1,2 ensuring the existence
of moments for the stationary solution for which the top-Lyapunov exponent
will be automatically negative. In that case we say that the equation (3) has a
second-order stationary solution and the process (Xt)t∈Z defined by (2) is said
to be periodically stationary.

Theorem 2. A sufficient condition for existence of a second-order stationary
solution of the equation (3) is that det

{
I(2) − zΦ

} 6= 0 for all complex z such
that |z| ≤ 1, where Φ = E

(
Φ¯2

t

)
. The solution process has zero mean and

variance-covariance matrix Σ(h) = diag {r(h)}, where r(h) = E
(
Xt ¯Xt−h

)

satisfies r(h) =
{
I(2) − Φ

}−1
δ0(h) with δ0(h) = (1, 1)′ if h = 0, (0, 0)′ oth-

erwise. Moreover, the solution process is unique, strictly stationary, causal
and ergodic, given by (5). Conversely, a necessary condition for existence of a
second-order stationary solution is that there exists a variance-covariance ma-
trix Σ(h) = diag {r(h)} and r(h) is the solution of the equation

{
I(2) − Φ

}
r(h)

= δ0(h).

Proof. The proof is straightforward, since it is simply based on the computation
of spectral radius of matrix Φ. �

Remark 3. As a consequence of the above theorem, the second-order stationary
solution (Xt)t∈Z of (3) is a weak white noise (Σ(h) = 0 for h 6= 0), and so the
process (Xt)t∈Z is serially uncorrelated, but not independent.

Remark 4. When causal, it is possible to relate (Xt)t∈Z and (εt)t∈Z through
the infinite order moving-average representation

(6) Xt(υ) =
∑

k≥0

ψk(υ)ξ(υ)
k (t),

where ψk(υ) = bkυ and

ξ
(υ)
k (t) =





k−1∏

j=0

εt(υ − 2j − 1)



 εt(υ − 2k).
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In (6), the ‘seasonal weights’ ψk(υ) satisfy

sup
υ=1,2

∑

k≥0

|bυ|k = sup
υ=1,2

{
(1− |bυ|)−1

}
< +∞.

2.2. Existence of moments up to 2m-order for the vector process

We now investigate the existence of moments up to 2m-order for the vector
process (Xt)t∈Z. More precisely, we derive necessary and sufficient conditions
for the finiteness of E(X¯2m

t ) for any integer m ≥ 1. In view of (3), for all
m ≥ 1, we have

X¯m
t = Φ¯m

t X¯m
t−1 + ε¯m

t +
m−1∑

`=1

m!
`! (m− `)!

(
ΦtXt−1

)¯` ¯ ε¯m−`
t .

Since the vector εt is normally distributed, we have E(X¯2m+1
t ) = 0 for all

integers m. This property implies in particular that the coefficient of skewness
τ(υ) = 0 for all υ ∈ {1, 2}. The following theorem gives necessary and sufficient
conditions for the existence of moments up to the 2m-th order for (Xt)t∈Z.

Theorem 3. Consider the model (3). Then, the process (Xt)t∈Z admits mo-
ments up to 2m-th order if and only if

(2k − 1)!! max
υ=1,2

{
b2k
υ

}
< 1, k = 1, . . . ,m,

with (2k − 1)!! = 1× 3× · · · × (2k − 1).

Proof. The proof is straightforward, so we omit it. �

Remark 5. It is worth noting that, contrary to strict stationary condition given
in Remark 2, the second-order stationary condition imposes that all regimes
must be stationary.

2.3. Covariance structures

In this subsection, we concentrate on covariance structures for {X2
t (υ)}t∈Z

defined by (2). Such results will be crucially needed for applications to the
estimation procedure we will consider in Section 3. Denote

γ(υ)(h) = E
[{
X2

t (υ)− µ(υ)
}{

X2
t (υ − h)− µ(υ − h)

}]
, h ≥ 0,

the covariances of X2
t (υ) for all υ ∈ {1, 2}, where µ(υ) = E{X2

t (υ)} and
γ(υ)(h) = γ(υ−h)(−h) when h < 0. The following results characterize the
covariance function of the squared process {X2

t (υ)}t∈Z.

Theorem 4. Assume that (Xt)t∈Z admits moments up to 4-th order. Then,
for all υ ∈ {1, 2}, we have:

(1) µ(υ) =
(
1− b2υ

)−1,
(2) γ(υ)(0) = 2

(
1− 3b4υ

)−1
µ2(υ),

(3) γ(υ)(1) = 2b2υ
(
1− b2υ

)−1
µ(υ + 1),
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(4) for all h ≥ 1, γ(υ)(2h) = b2h
υ γ(υ)(0),

(5) for all h ≥ 2, γ(υ)(2h− 1) = b
2(h−1)
υ γ(υ)(1).

Proof. The above formulas can be easily obtained using (6). �

Remark 6. A few comments can be made. One can see that the covariances of
{X2

t (υ)}t∈Z depend not only on the coefficients bυ, but also on the expectation
of the squared process {X2

t (υ)}t∈Z. It is also worth mentioning that, under
the assumptions of Theorem 4, the kurtosis κ(υ) of the process {Xt(υ)}t∈Z is
given by

κ (υ) =
E
{
X4

t (υ)
}

[E {X2
t (υ)}]2

=
γ(υ)(0) +

[
E
{
X2

t (υ)
}]2

[E {X2
t (υ)}]2

= 1 + 2
1− b2υ
1− 3b4υ

.

Hence the process is characterized by leptokurtosis in excess with respect to
the normal distribution if

1
3
< b2υ ≤

1√
3

and, contrarily to the pure ARCH(1) model, we obtain κ(υ) ≤ 3 when

0 ≤ b2υ ≤
1
3
.

This property can be used to distinguish between pure ARCH and periodic
bilinear models.

3. Proposed minimum distance estimator and asymptotic
properties

Let (X1, . . . , X2n) be a sample from a periodically stationary bilinear pro-
cess generated by (2). This is equivalent to having a sample (X1, . . . , Xn) from
a stationary generalized autoregressive process (Xt)t∈Z given by (3). In this
section, our purpose is to use the minimum distance estimator (MDE) to es-
timate the periodic bilinear parameters, gathered in b = (b1, b2)′. We suppose
that b belongs to a parameter space Θ ⊂ ]−1, 1[× ]−1, 1[. The true parameter
value is unknown and is denoted by b0. For practical estimation purpose, the
moments of (X2

t )t∈Z can be approximated by their empirical sample moments,
and so γ(υ)(·) in Theorem 4, can be replaced by quantities like

γ̃(υ)
n (2k) = b2k

υ γ̃(υ)
n (0) and γ̃(υ)

n (2k − 1) = b2(k−1)
υ γ̃(υ)

n (1),

where

γ̃(υ)
n (0) =

2
1− 3b4υ

µ̂n(υ) and γ̃(υ)
n (1) =

2b2υ
1− b2υ

µ̂n(υ + 1)

with µ̂n(υ) = n−1
∑n−1

t=0 X
2
t (υ). Here, the convention Xt = 0 for t > n is made.

By setting µ̂
n

= {µ̂n(1), µ̂n(2)}′, µ = {µ(1), µ(2)}′, γ̃
n
(h) =

{
γ̃

(1)
n (h), γ̃(2)

n (h)
}′
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and γ(h) =
{
γ(1)(h), γ(2)(h)

}′
, we have

γ̃
n
(h) = B(h)µ̂

n
and γ(h) = B(h)µ,

where

B(2h) =




2b2h
1

1− 3b41
0

0
2b2h

2

1− 3b42


 , B(2h− 1) =




0
2b2h

1

1− b21
2b2h

2

1− b22
0


 .

The asymptotic properties of the sequences {µ̂n(·)}n≥1 and {γ̃(υ)
n (·)}n≥1 are

given in the following theorem.

Theorem 5. Assume that the process (Xt)t∈Z admits moments up to 4-th
order. Then, for each υ, υ′ ∈ {1, 2},

(1) µ̂n(υ) (respectively γ̃
(υ)
n (k)) converges a.s. to µ (υ) (respectively to

γ(υ)(k)) as n→∞,
(2) we have

lim
n→∞

nCov {µ̂n(υ), µ̂n(υ′)} = (V )υ,υ′

and

lim
n→∞

nCov
{
γ̃(υ)

n (`), γ̃(υ′)
n (k)

}
= {W (`, k)}υ,υ′ ,

where

V = 2




1 + b21

(1− 3b41) (1− b21)
3

(
1− b22

)
b21 +

(
1− b21

)
b22

(1− b22)
2 (1− b21)

2
(
1− b22

)
b21 +

(
1− b21

)
b22

(1− b22)
2 (1− b21)

2

1 + b22

(1− 3b42) (1− b22)
3




and W (`, k) = B(`)V B′(k),
(3) we have √

n
(
µ̂

n
− µ

)
; N (0, V )

and √
n
{
γ̃

n
(h)− γ(h)

}
; N {0,W (h, h)} .

Proof. Assertions 1–2 of Theorem 5 can be simply followed by exploiting the
relationship between the periodic bilinear model (2) and its vectorial represen-
tation (3) and by expressing Y t = X¯2

t −µ as a strictly stationary and ergodic
2-dimensional process. To show Assertion 3, define for any m ≥ 1,

Ut(υ) =
m∑

k=0

ψk(υ)ξ(υ)
k (t) and Wt(υ) =

∞∑

k=m+1

ψk(υ)ξ(υ)
k (t),

where ξ(υ)
k (t) is given by (6). Consider the vectors U t = {Ut(1), Ut(2)}′ and

W t = {Wt(1),Wt(2)}′. Then, (Xt)t∈Z can be expressed as

(7) Xt = U t +W t,



896 ABDELOUAHAB BIBI AND ANTONY GAUTIER

where (U t)t∈Z is an (m+ 1)-dependent stationary process and (W t)t∈Z con-
verges in probability to zero as m → ∞. Hence, the asymptotic distribution
of
√
n(µ̂

n
− µ) is the same as the one of 1√

n

∑n−1
t=0

{
U¯2

t − E
(
U¯2

t

)}
. Since

E{U¯2
t

(
U¯2

t

)′} < +∞, we have for any fixed m,

1√
n

n−1∑
t=0

{
U¯2

t − E
(
U¯2

t

)}
; N

{
0,

m∑

k=−m

Cov
(
U¯2

t , U¯2
t+k

)
}

(see Brockwell and Davis [5] Theorem 6.4.2). As m→∞, U t converges to Xt

in probability, and so the covariance matrix of the asymptotic distribution con-
verges to

∑
k∈Z Cov

(
X¯2

t , X¯2
t+k

)
which can be easily expressed by the matrix

V . The rest of the proof immediately follows. �

Let us now consider the MDE. For any h ≥ 1, let

Γ(b) = Γ =
{
γ′(0), . . . , γ′(h)

}′
,

Γ̃n(b) = Γ̃n =
{
γ̃′

n
(0), . . . , γ̃′

n
(h)
}′

and Γ̂n =
{
γ̂′

n
(0), . . . , γ̂′

n
(h)
}′
,

where γ̂
n
(i) =

{
γ̂

(1)
n (i), γ̂(2)

n (i)
}′

with, for each υ = 1, 2, the sample covariance

of X2
t (υ) evaluated at lag i

γ̂(υ)
n (i) =

1
n

n−1∑
t=0

[{
X2

t (υ)− µ̂n(υ)
}{

X2
t (υ − i)− µ̂n(υ − i)

}]
, i = 0, . . . , h.

Note that, by Theorem 5, Γ̃n converges a.s. to Γ. Now, the MDE of the
parameter b is defined as any measurable solution b̃n of

arg min
b∈Θ

F̃ ′n(b)MnF̃n(b) = arg min
b∈Θ

Q̃n(b),

where Q̃n(b) = F̃ ′n(b)MnF̃n(b), Mn is a 2(h+ 1)× 2(h+ 1) weighting matrix,
and F̃n(b) = Γ̂n − Γ̃n(b) is the score function. The dependence of F̃n(·), Q̃n(·)
andMn onXt and h is generally deleted for notational convenience. To analyze
the large sample properties of the proposed estimator, it is necessary to impose
the following regularity conditions on the process (Xt)t∈Z, on the matrix Mn

and on the parameter space Θ.
A1: The process (Xt)t∈Z is strictly stationary and ergodic.
A2: (Mn) is a sequence of positive definite matrices and there exists a

positive definite matrix of constants M such that p limn→∞Mn = M .
A3: The matrix ∂Γ′(b0)

∂b M
∂Γ(b0)

∂b is a finite nonsingular matrix of con-
stants.

A4: The parameter Θ is compact and b0 is in the interior of Θ.
Under these assumptions, we can state the following result.
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Theorem 6. Under A1−A4 and if (Xt)t∈Z admits moments up to 4-th order,
then b̃n converges in probability to b0.

Proof. From the first-order conditions (organized as column vector) for the
minimization of Q̃n(b), we have

(8)
∂Γ̃

′
n(̃bn)
∂b

MnF̃n(̃bn) = 0.

Taking the first-order Taylor-series expansion of the score vector F̃n(̃b) around
b0, we have

F̃n(̃bn) = F̃n(b0)−
∂Γ̃n(b∗)
∂b

(
b̃n − b0

)
,

where b∗ is an intermediate point on the line segment joining b̃n and b0. Sub-
stituting for F̃n(̃bn) into (8) yields

∂Γ̃
′
n(̃bn)
∂b

Mn

{
F̃n(b0)−

∂Γ̃n(b∗)
∂b

(
b̃n − b0

)}
= 0.

Rearranging the above expression gives a.s.

b̃n − b0 =

{
∂Γ̃

′
n(̃bn)
∂b

Mn
∂Γ̃n(b∗)
∂b

}−1
∂Γ̃

′
n(̃bn)
∂b

MnF̃n(b0).

Since the process (Xt)t∈Z is second-order stationary and ergodic, and since
∥∥∥∥
∂

∂b
γ̃

n
(i)
∥∥∥∥

op

=
∥∥∥∥
∂

∂b

{
B(i)µ̂

n

}∥∥∥∥
op

≤ K
∥∥∥µ̂

n

∥∥∥

for each i = 0, . . . , h and for some positive constant K, we can see that, under
the conditions of Theorem 5,

p lim
n→∞

∂Γ̃n(̃bn)
∂b

Mn = B =
∂Γ(b0)
∂b

M,

p lim
n→∞

∂Γ̃
′
n(̃bn)
∂b

Mn
∂Γ̃n(b∗)
∂b

= A =
∂Γ′(b0)
∂b

M
∂Γ(b0)
∂b

.

Hence from the dominated convergence theorems,

p lim
n→∞

{
∂Γ̃

′
n(̃bn)
∂b

Mn
∂Γ̃n(b∗)
∂b

}−1
∂Γ̃

′
n(̃bn)
∂b

Mn = A−1B′

is finite, and since p lim
n→∞

F̃n(b0) = 0, the consistency of b̃n follows. �

Now, we consider the estimator

b̂n = arg min
b∈Θ

F̂ ′n(b)MnF̂n(b) = arg min
b∈Θ

Q̂n(b),
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where Q̂n(b) = F̂ ′n(b)MnF̂n(b), and the score function F̂n(b) is defined by
F̂n(b) = Γ̂n−Γ(b). The asymptotic properties of {F̂n(b)}n≥1 are given in the
following theorem.

Lemma 1. Let (Xt)t∈Z be a process satisfying the model (2).

(1) If (Xt)t∈Z admits moments up to 4-th order, then Γ̂n converges a.s.
to Γ.

(2) If (Xt)t∈Z admits moments up to 8-th order, then
√
n
(
Γ̂n − Γ

)
; N (0,Σ) ,

where Σ is a 2(h+1)× 2(h+1) covariance matrix whose (i, j)-th block
matrix Σi,j is given by

Σi,j =
∑

k∈Z
Cov

{
X¯2

t ¯X¯2
t−i(i), X

¯2
t+k ¯X¯2

t+k−j(j)
}
, i, j = 0, . . . , h,

with Xt(i) = {Xt(i+ 1), Xt(i+ 2)}′.
Proof. For any integer i ≥ 0, let Xt(i) = {Xt(i + 1), Xt(i + 2)}′, µ̂

n
(i) =

{µ̂n(i+ 1), µ̂n(i+ 2)}′ and µ(i) = {µ(i+ 1), µ(i+ 2)}′. Then the vector γ̂
n
(i)

can be written as

(9) γ̂
n
(i) =

1
n

n−1∑
t=0

X¯2
t ¯X¯2

t−i(i)− µ̂
n
¯ µ̂

n
(i).

By ergodicity of Xt, the first and second terms in (8) converge a.s. respectively
to E

{
X¯2

t ¯X¯2
t−i(i)

}
and to µ¯µ(i). Hence the first assertion is an immediate

consequence of the strong law of large numbers. Since µ ¯ µ(i) = −γ(i) +
E
{
X¯2

t ¯X¯2
t−i(i)

}
, then the asymptotic distribution of

√
n{γ̂

n
(i) − γ(i)} is

similar to the asymptotic distribution of

1√
n

n−1∑
t=0

[
X¯2

t ¯X¯2
t−i(i)− E

{
X¯2

t ¯X¯2
t−i(i)

}]
.

Let (U t)t∈Z and (W t)t∈Z be the processes defined as in (7). Since U t con-
verges in probability to a stationary process and W t converges in probability
to zero as m → ∞, then we can show that the asymptotic distribution of
n−1/2

∑n−1
t=0 [X¯2

t ¯X¯2
t−i(i)− E{X¯2

t ¯X¯2
t−i(i)}] is the same as the one of

1√
n

{
n−1∑
t=0

[
U¯2

t ¯ U¯2
t−i(i)− E

{
U¯2

t ¯ U¯2
t−i(i)

}]
}

as m→∞.

Now, for any sequence of 2× 1 vectors (λi)0≤i≤h, let Pn = n−1/2
∑n−1

t=0 Yt(h),
where

Yt(h) =
h∑

i=0

λ′i
[
U¯2

t ¯ U¯2
t−i(i)− E

{
U¯2

t ¯ U¯2
t−i(i)

}]
.
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Clearly, {Yt(h)}t∈Z is a stationary (m+ 1)-dependent process with

E {Yt(h)Yt+k(h)} = λ′W (k)λ < +∞,

where λ =
(
λ′0, . . . , λ

′
h

)′ and where W (k) is the covariance matrix with (i, j)-th
block matrix being

{W (k)}i,j = Cov
{
U¯2

t ¯ U¯2
t−i(i), U

¯2
t+k ¯ U¯2

t+k−j(j)
}
, i, j = 0, . . . , h.

Therefore, we have n−1/2
∑n−1

t=0 Y t(h) ; N (0, λ′Wλ
)
, where the (i, j)-th block

matrix of the covariance matrix W is (W )i,j =
∑m

k=−m {W (k)}i,j . As m→∞,
W converges to Σ whose (i, j)-th block matrix is

(Σ)i,j =
∑

k∈Z
Cov

{
X¯2

t ¯X¯2
t−i(i), X

¯2
t+k ¯X¯2

t+k−j(j)
}
, i, j = 0, . . . , h.

Finally the proof follows from the Cramer-Wold device. �

The following theorem states the asymptotic normality of b̂n.

Theorem 7. Under A1–A4 and if (Xt)t∈Z admits moments up to 8-th order,
then √

n
(
b̂n − b0

)
; N (0, A−1BΣB′A′−1).

Proof. The proof rests classically on a Taylor-series expansion of the score
vector Fn(b) around b0. Thus, by the same argument used in Theorem 6, we
have

(10)

{
∂Γ′(̂bn)
∂b

Mn
∂Γ(̂b∗)
∂b

}(
b̂n − b0

)
=
∂Γ′(̂bn)
∂b

MnF̂n(b0).

From Lemma 1, we have p limn→∞ F̂n(b0) = 0, and thus p limn→∞ b̂n = b0. On
the other hand, in the expansion (10) we have the following limits

A = p lim
n→∞

∂Γ′(̂bn)
∂b

Mn
∂Γ(̂b∗)
∂b

, B = p lim
n→∞

∂Γ′(̂bn)
∂b

Mn

since
√
nF̂n(b) ; N (0,Σ). Then, the result simply follows from Slutsky’s

theorem. �
The result in Theorem 7 can be easily generalized in Theorem 8 to the

estimator b̃n. Indeed, we have F̃n(b) − F̂n(b) = Γ(b) − Γ̃n(b) and
√
n{F̃n(b) −

F̂n(b)}k,k = −√nB(k)(µ̂
n
− µ). From Theorem 5, we have Var(µ̂

n
) = O(n−1)

and thus p limn→∞
√
n(µ̂

n
− µ) = 0. Hence p limn→∞

√
n{F̃n(b) − Fn(b)} = 0

and consequently
√
nF̃n(b) converges to the same limit distribution as the one

of
√
nF̂n(b).

Theorem 8. Under A1–A4 and if (Xt)t∈Z admits moments up to 8-th order,
then √

n
(
b̃n − b0

)
; N (0, A−1BΣB′A′−1).
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Remark 7. We now discuss the optimal choice of the weighting matrix M . It is
clear from Theorem 7 that the asymptotic variance of b̂n depends on Mn via M .
As it is the case for GMM estimation, under the conditions of Theorem 8, the
choice of M matters for asymptotic efficiency. When appropriately choosing
M , it is possible to minimize the asymptotic variance of b̂n. Then the minimum
variance that can be achieved is when M = Σ−1. In this particular case, the
asymptotic variance of b̂n is

{
∂Γ′(b0)
∂b

Σ−1 ∂Γ(b0)
∂b

}−1

and nQ̂n(b) has an asymptotic chi-square distribution (see Hall [8, Theo-
rem 3.4]). One can note that this choice is only sufficient for efficiency. Hence,
estimating the matrix Σ by a consistent estimator Σ̂n is crucial since: i) it is
the optimal weighting matrix of MDE ; ii) it is a part of the construction of
b̂n (see Hall [8, Chapter 3]) and its asymptotic variance (needed to construct
confidence intervals and to make statistical tests based on b̂n). In practice, the
Newey-West estimator (see Newey and McFadden [9]) can be used:

Σ̂n = Ω̂n(0) +
q∑

j=1

K

(
j

q

){
Ω̂n(j) + Ω̂′n(j)

}
,

where Ω̂n(j) = n−1
∑n−j−1

t=0 W tW
′
t+j with W t = {W ′

t(0), . . . ,W ′
t(h)}′, W t(k)

= (X¯2
t − µ̂

n
) ¯ {X¯2

t−k(k) − µ̂
n
(k)} − γ(k) for k = 0, . . . , h, the truncated

lag q needs to go to infinity at some appropriate rate with respect to the
sample, and the kernel weight K(j/q) is assumed to satisfy K(·) ∈ K, where
K = {k : R → [−1, 1] | k(0) = 1, k(x) = k(−x), ∀x ∈ R,

∫ |k(x)|dx <
∞, and k is continous but at some countable points}. Examples of such ker-
nel weights are the following:

name expression

truncated kT (x) =
{

1 if |x| ≤ 1,
0 otherwise,

Bartlett kB(x) =
{

1− |x| if |x| ≤ 1,
0 otherwise,

Parzen kP (x) =





1− 6x2 + 6|x|3 if |x| ≤ 1/2,
2(1− |x|)3 if 1/2 < |x| ≤ 1,
0 otherwise,

Tukey-Hanning kH(x) =
{

(1 + cosπx)/2 if |x| ≤ 1,
0 otherwise,

quadratic spectral kQ(x) = 25
12(πx)2

{
sin(6πx/5)

6πx/5 − cos(6πx/5)
}
.

It can be shown that Bartlett, Parzen and quadratic spectral kernels all
product positive semi-definite estimates of Σ while this is not necessarily the
case for truncated and Tukey-Hanning kernels.
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4. Hypotheses testing

As an application of Theorem 8, we consider the problem of testing a null
hypothesis against an alternative hypothesis of the form

(11) H0 : Rb = b∗ v.s. H1 : Rb 6= b∗,

where R is a given 2× 2 matrix of rank 2, and b∗ is a given vector. Under the
null hypothesis H0 in (11) and under the conditions of Theorem 8,

√
n
(
Rb̃n − b∗

)
; N (0, RA−1BΣB′A′−1R′

)
.

Moreover, if the matrix Σ is nonsingular, then the asymptotic variance ma-
trix involved below is nonsingular. So we have the following result from the
continuous mapping theorem.

Theorem 9. Assume that the conditions of Theorem 8 hold and Σ is a non-
singular matrix. Then, under the null hypothesis in (11) with R of rank 2, we
have

(12) Wn = n
(
Rb̃n − b∗

)′ (
RÂ−1

n B̂nΣ̂nB̂
′
nÂ

′−1

n R′
)−1 (

Rb̃n − b∗
)

; χ2
2,

where Ân and B̂n are some consistent estimates of A and B respectively. In
addition, under the alternative hypothesis in (11), we have

(13) p lim
n→∞

n−1Wn = (Rb− b∗)′
(
RA−1BΣB′A′−1R′

)−1
(Rb− b∗) > 0.

Note that the test statistics Wn is now the one of the Wald test of the null
hypothesis in (11). Given the size α ∈ [0, 1], choose a critical value β so that
under the null hypothesis in (11), P(Wn > β) −→ α. Then the null hypothesis
is accepted if Wn ≤ β, and rejected in favor of the alternative hypothesis if
Wn > β. This test is consistent due to (13). In the case when R is a raw vector
(so b∗ is a scalar), we can modify (12) to

tn =
√
n
(
RÂ−1

n B̂nΣ̂nB̂
′
nÂ

′−1

n R′
)−1/2 (

Rb̃n − b∗
)

; N (0, 1) ,

whereas under the alternative hypothesis in (11), (13) becomes

p lim
n→∞

tn√
n

=
(
RA−1BΣB′A′−1R′

)−1/2
(Rb− b∗) 6= 0.

These results can be used to construct two-sided or one-sided tests. In partic-
ular, we have the following result.

Theorem 10. Assume that the conditions of Theorem 9 hold. Consider the
hypotheses

H
(υ)
0 : bυ = b∗υ v.s. H

(υ)
1 : bυ 6= b∗υ, υ ∈ {1, 2},
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where b∗υ is given. Let (ei, i = 1, 2) be the canonical basis of R2. Then, under
H

(υ)
0 ,

tn(υ) =

√
n
(
b̃υ,n − b∗υ

)
√
e′υÂ

−1
n B̂nΣ̂nB̂′nÂ′n

−1
eυ

; N (0, 1) ,

whereas under H(υ)
1 ,

p lim
n→∞

tn(υ)√
n

=
bυ − b∗υ√

e′υA−1BΣB′A′−1eυ

6= 0.

Given the size α ∈ ]0, 1[, choose a critical value β so that, if the null hypothesis
is true, we have P{|tn(υ)| > β} → α. Then the null hypothesis is accepted if
|tn(υ)| ≤ β, and rejected in favor of the alternative hypothesis if |tn(υ)| > β.

Remark 8. One can notice that this test is obviously consistent. Moreover,
it is worth mentioning that the value b∗υ = 0 is of special interest to test the
Gaussianity.

5. Simulation results

In order to illustrate the performance of our asymptotic results described
in previous sections, we now provide some numerical results from Monte Carlo
experiments. We simulated 1000 independent trajectories via a periodic bi-
linear processes of length n ∈ {100, 500, 2000} with period s = 2, standard
normal errors distribution and parameter b = (b1, b2)′ which satisfies the sec-
ond order stationarity and existence of moments up to 4-th order conditions,
that is to say max{b41, b42} < 1/3. For the asymptotic normality, we assume
that max{b81, b82} < 1/105. For each trajectory, the parameter vector b has

first been estimated with MDE, noted as b̃
M

n = (̃bM1,n, b̃
M
2,n)′. All the efficient

Minimum Distance (MD) estimations have been performed with the parameter
dependent truncated kernel weight kT described in Remark 7. For purposes of
comparison, the parameter vector b has also been estimated by a usual Least
Squares (LS) method, which produced the estimator noted as b̃

L

n . In addition,
in order to have an heavy-tailed distribution for the errors, we considered the
Student t5-distribution as well (where 5 denotes the number of degrees of free-
dom), to replace the standard Gaussian assumption in MD and LS estimation.
This additional experiment is made to emphasize that the proposed asymp-
totic theory is free from the Gaussianity assumption. In Tables 1–2 below,
the rows “Means” correspond to the average of the parameters estimates over
the 1000 simulations. We give into brackets the results obtained from the t5-
distribution for the errors process (εt). Replacing the unknown parameters by
their estimates, we obtain the estimates V̂n, Ŵn(h, h) and Σ̂n respectively for
V , W (h, h) defined in Theorem 5 and for Σ defined in Lemma 1. We denote

by
√

Varas(̃b·υ,n) = n−1/2

√
(Σ̂n)υ,υ the estimator of the standard deviation.
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Table 1. Characteristics of the empirical distribution for
MDE and LS estimate, and rejection relative frequencies of
the null hypotheses, for Design 1. The brackets give the es-
timations obtained from a t5-distribution for the errors. The
number of replications is 1000.

Sample size n 100 500 2000

Estimate eb
M

n
eb

L

n
eb

M

n
eb

L

n
eb

M

n
eb

L

n

Design 1: b = (0.5,−0.5)′

Means 0.4246 0.4938 0.4865 0.4988 0.4963 0.4970
(0.4014) (0.5004) (0.4786) (0.4972) (0.4896) (0.4908)
-0.4300 -0.4946 -0.4881 -0.4989 -0.4975 -0.4974

(-0.4100) (-0.5067) (-0.4761) (-0.4951) (-0.4914) (-0.4920)
RMSE∗ 0.1893 0.0650 0.0752 0.0264 0.0349 0.0257

(0.1781) (0.1144) (0.0753) (0.0572) (0.0402) (0.0632)
0.1864 0.0668 0.0732 0.0274 0.0352 0.0243

(0.1734) (0.1107) (0.0766) (0.0601) (0.0374) (0.0592)
RMSE 0.2037 0.0662 0.0764 0.0264 0.0351 0.0259

(0.2027) (0.1143) (0.0782) (0.0572) (0.0415) (0.0639)
0.1990 0.0670 0.0741 0.0274 0.0353 0.0244

(0.1953) (0.1109) (0.0802) (0.0603) (0.0394) (0.0597)

H
(1)
0 rejection 68.9% 100% 99.9% 100% 100% 100%

(70.8%) (98.2%) (100%) (99.2%) (100%) (99.1%)

H
(2)
0 rejection 71.2% 100% 99.8% 100% 100% 100%

(74.6%) (98.5%) (99.7%) (99.3%) (100%) (99.1%)

H
(3)
0 rejection 84.8% 100% 100% 100% 100% 100%

(84.8%) (99.5%) (100%) (99.9%) (100%) (99.6%)

In order to demonstrate that this estimate, although based on the asymptotic
theory, can be successfully applied to finite samples of reasonable size, the av-

erage of
√

Varas(̃b·υ,n) over the 1000 simulations, denoted RMSE∗, has been

compared to the root of the mean of (̃b·υ,n − bυ)2 over the 1000 simulations,
denoted by RMSE.

Now, let use consider the null hypotheses H(1)
0 : b1 = 0, H(2)

0 : b2 = 0
and H

(3)
0 : b1 = b2. With MDE, H(1)

0 (respectively H
(2)
0 ) is rejected when

|̃bM1,n| (respectively |̃bM2,n|) is greater than 1.96 times its estimated standard de-

viation
√

Varas(̃bM1,n) (respectively
√

Varas(̃bM2,n) ). If the asymptotic theory
applies for such sample sizes, then the errors of first kind should be approxi-
mately 5%. More precisely H

(3)
0 is rejected when |̃bM1,n − b̃M2,n| is greater than

1.96
√
RVaras(̃b

M

n )R′). We used the same procedure for the LS estimate b̃
L

n , as
well as with a t5-distribution for the errors.
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The simulation results are reported in Tables 1–2. The results related to
Design 1 are in accordance with the asymptotic theory presented in the pa-
per. It is clear that the RMSE’s are greater than the RMSE∗’s, and the tests
based on MDE are powerful for large sample sizes. The results reported for
Design 2 also conclude to the performance of MDE for large sample sizes. The
analysis of the simulation results for the MDE in the case n = 100 shows that
the asymptotic theory should be used with caution for moderate sample sizes.
In addition, even for large samples, the rejection relative frequency of H(2)

0 is
far from the theoretical 5% for n = 2000. Regarding the results given into
brackets, but for the columns dealing with b̃

M

n , it is worth noting that, on the
one hand, the effect of the t5-distribution is insignificant apart from the RMSE
or RMSE∗. On the other hand, the effect of the t5-distribution is meaningful
in the remaining columns when the Gaussianity assumption is better than the
Student distribution. In Design 2, with both estimators, the rejection rela-
tive frequency H

(3)
0 is deteriorated under both the Gaussian and the Student

distributions. This is due to the fact that the standard deviation of the esti-
mators are not well estimated by

√
Varas(·), even for large samples. To solve

this problem, some alternative estimators for Σ, like bootstrap or Newey-West
(see Remark 7) estimators could be investigated, but it is not the scope of the
paper. Finally, we can notice that, as expected, the LS estimate performs very
well in each design, even for moderate sample sizes (see n = 100).

Table 2. As in Table 1, but for Design 2.

Sample size n 100 500 2000

Estimate eb
M

n
eb

L

n
eb

M

n
eb

L

n
eb

M

n
eb

L

n

Design 2: b = (0.5, 0.5)′

Means 0.4247 0.4967 0.4865 0.4974 0.4963 0.4980
(0.4014) (0.4985) (0.4786) (0.4970) (0.4896) (0.4901)

0.4359 0.4981 0.4873 0.4975 0.4965 0.4983
(0.4169) (0.4986) (0.4761) (0.4965) (0.4913) (0.4902)

RMSE∗ 0.1890 0.0647 0.0752 0.0319 0.0349 0.0223
(0.1766) (0.1129) (0.0753) (0.0525) (0.0402) (0.0632)

0.1851 0.0669 0.0760 0.0288 0.0340 0.0209
(0.1702) (0.1122) (0.0764) (0.0552) (0.0397) (0.0630)

RMSE 0.2034 0.0647 0.0764 0.0321 0.0351 0.0224
(0.2022) (0.1129) (0.0792) (0.0525) (0.0415) (0.0639)

0.1953 0.0669 0.0771 0.0289 0.0342 0.0210
(0.1903) (0.1111) (0.0800) (0.0553) (0.0397) (0.0636)

H
(1)
0 rejection 69.4% 100% 100% 100% 100% 100%

(71.2%) (98.4%) (100%) (99.6%) (100%) (98.9%)

H
(2)
0 rejection 73.3% 100% 100% 100% 100% 100%

(77.3%) (98.4%) (99.9%) (99.6%) (100%) (98.7%)

H
(3)
0 rejection 3.7% 3.4% 2.6% 0.6% 2.2% 0.1%

(2.5%) (3.9%) (1.3%) (1.0%) (2.2%) (1.0%)
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6. Concluding remarks

This paper investigated the question of parameter estimation for a periodic
bilinear model, which allows the coefficients to vary periodically with respect
to time. This problem has been previously resolved in the statistical literature
for the usual time-constant case. We considered a distribution-free approach
based on MDE. We showed that MD (and LS) estimates perform very well for
large sample sizes, not only with a common Gaussian assumption for the noise,
but also with heavy-tailed distribution for the error, the Student distribution
being an example. Consistency and asymptotic normality of the MDE, as well
as hypotheses testing, have been derived. The behavior of the estimators has
also been studied via simulations, showing satisfactory (and expected) results.
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