Effect of Sopyung-tang Extract on Insulin Secretion and Gene Expression in RIN-m5F Cells

소평탕(消平湯)이 RIN-m5F 세포에서 인슐린 분비 및 유전자 발현에 미치는 영향

  • Youn, Sung-Sik (Dept. of Oriental Medicine Graduate school, Dae-Jeon University) ;
  • Cho, Chung-Sik (Dept. of Oriental Medicine Graduate school, Dae-Jeon University)
  • 윤성식 (대전대학교대학원 한의학과 내과학교실) ;
  • 조충식 (대전대학교대학원 한의학과 내과학교실)
  • Published : 2010.03.31

Abstract

Background : At high glucose levels in $\beta$-cells, cell viability and insulin secretion are decreased by glucotoxicity. Sopyung-tang(SPT) had an effect on blood glucose level decrease and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Objectives : This study performed a series of experiment to verify the effects of SPT extract on the cell viability, antioxidant enzyme activities, insulin secretion and insulin mRNA expression at hyperglycemic states of RIN-m5F. Methods : After treatment at various concentrations of SPT added to the RIN-m5F cells, cell viability by MTT assay, free radical-scavenging activity, SOD activity and insulin secretion were measured. Additionally, insulin-related gene expression was measured using real-time RT-PCR. Results : Compared to the control group, SPT extract showed considerable effects on RIN-m5F cell viability, DPPH radical-scavenging activity, superoxide dismutase (SOD) activity, insulin secretion and insulin-related gene expression. Conclusions : This study showed that SPT extract has an effect on $\beta$-cell cell viability, insulin secretion and insulin-related gene expression. Thus, SPT extract may be used for treatment of diabetes and its complications. Further mechanism studies of SPT seem to be necessary on the glucotoxicity and oxidative stress.

Keywords

References

  1. 두호경. 동의신계학. 서울: 동양의학연구원; 1993, p. 1173-1178.
  2. C. Guyton, John E. Hall. Text book of medical physiology. W.B. Saunders; 2002, p. 1033-1048.
  3. 통계청. 2008년 사망 및 사망원인통계결과. 2009. Available at http://epic.kdi.re.kr/epic/epic_view .jsp?num=102999&me
  4. Steiner G. Diabetes and atherosclerosis:an overview. Diabetes. 1981;30(Suppl 2):1-7.
  5. The diabetes control and complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complication in insulin-dependent diabetes mellitus. N ENG J Med 1993;329 :977-986. https://doi.org/10.1056/NEJM199309303291401
  6. Robertson RP: Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 2004;279:42351-42354. https://doi.org/10.1074/jbc.R400019200
  7. Nourooz-Zadeh J, Tauaddini-Surmadi J, McCathy S, Betteridge DJ, Wolff SP. Elevated levels authentic plasma hydroperoxides in NIDDM. Diabetes 1995;44:1054-1058. https://doi.org/10.2337/diabetes.44.9.1054
  8. Frustaci A, et al. Myocardial cell death in human diabetes. Circ Res 2000;87:1123-1132. https://doi.org/10.1161/01.RES.87.12.1123
  9. Hunt JV, Dean RT, Wolff SP; Hydroxy radical production and autoxidative glycosylation: glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem J 1988;256:205-212.
  10. Schmidt AM, Hori O, Brett J, Yan SD, Wautlar JL, Stern D: Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vescular lesion. Arterioscle Thromb Vasc Biol. 1994;14:1521-1528. https://doi.org/10.1161/01.ATV.14.10.1521
  11. Kahn SE. The relative contributions of insulin resistance and $\beta$-cell dysfunction to the pathophysiology of type2 diabetes. Diabetologia. 2003;46:3-19. https://doi.org/10.1007/s00125-003-1190-9
  12. 원규장, 윤지성. 제2형 당뇨병에서 포도당 독성과 췌도 베타세포 기능저하. 대한당뇨병학회. 2008;32:175-181.
  13. Unger RH. Lipotoxicity in the Pathogenesis of obesity-dependent NIDDM. Diabetes. 1995;44 :863-870. https://doi.org/10.2337/diabetes.44.8.863
  14. 김철희, 김찬희, 박형균, 서교일, 이기업. 정상 백서 췌장소도에서 지방과부하에 의한 인슐린분비 장애의 특성 및 항산화제의 효과. 대한당뇨병학회. 2002;26(5):347-356
  15. Kumar V, Fausto N, Abbas A: Robbins & Cotran Pathologic Basis of Diseasa: free radical induced cell injury. 7th ed. W.B. Saunders. 2004, p. 16-18.
  16. 김상수, 손석만. 당뇨병과 산화 스트레스: 미토콘드리아 및 NAD(P)H Oxidase에 의한 ROS의 생성 및 역할. 대한당뇨병학회. 2008;32(5) :389-398.
  17. 박용기. 葛花와 鬱金및 苦蔘의 抗酸化作用에 關한 比較硏究. 대한본초학회지. 2001;16(1):41-53.
  18. 임자혜. 당뇨 유발 백서에서 홍삼액이 항산화효소 활성화에 미치는 영향. 경기대학교 기초과학논문집. 2004;17(1):129-145.
  19. 김옥경. 생약학회지. 구기자 분획물이Streptozotocin으로 유발된 당뇨 흰쥐에 대한 항당뇨 및 항산화작용에 미치는 효과. 2009;40(2):128-136.
  20. 방미애, 조영자, 김현아. 당뇨 유발쥐에서 인동초의 섭취가 혈청지질과 혈당 및 항산화효소계에 미치는 영향. 한국식생활문화학회지. 2002;17(4):377-386.
  21. 박선동, 주왕석, 고원도. 혈부축어탕과 그 구성 약물군이 Alloxan 당뇨 백서의 혈청 조성 및 항산화 효과에 미치는 영향. 대한본초학회지. 2002;17(2):93-111.
  22. 안소현. 苦蔘이 RIN-m5F 세포의 인슐린 분비와 $\alpha$-glucosidase 활성 억제에 미치는 영향. 대전대학교 대학원 석사학위논문. 2009.
  23. 최정식, 장선규, 조충식, 김철중, 한동운. 소평탕(消平湯)이 Streptozotocin으로 유발된 당뇨쥐의 혈당 및 항산화 효소 활성에 미치는 영향. 대한한방내과학회지. 2008;29(1):90-103.
  24. Kasper, Braunwald, Fauci, Hauser, Longo, Jameson 외. 해리슨내과학 16th. 서울: MIP; 2006, p.2351-2382.
  25. UK Prospective Diabetes study group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type2 diabetes(UKDPS 33). UK Prospective Diabetes Study(UKDPS) Group. lancet. 1998; 352:837-853. https://doi.org/10.1016/S0140-6736(98)07019-6
  26. 윤지성, 원규장, 이형우. 고농도 포도당에 노출된 INS-1세포와 백서 췌도 세포에서 포도당 산화 및 Reactive Oxygen Species(ROS) 생성. 대한당뇨병학회. 2006;30(4):246-253.
  27. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potentioal role of autoxidative glycosylation in diabetes. Biochem J. 1987;245:243-250.
  28. Baynes JW, Thorpe SR. The role of oxidative stress in diabetic complications. Curr Opin Endocrinol Diabetes Obes. 1996;3:277-284. https://doi.org/10.1097/00060793-199608000-00001
  29. West IC. Radical and oxidative stress in diabetes. Diabet Med. 2000;17:171-180. https://doi.org/10.1046/j.1464-5491.2000.00259.x
  30. Grankvist K, Marklund SL, Taljedal IB. CuZn -superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione paroxidase in pancreatic islets and other tissues in the mouse. Biochem J. 1981;199:393-398.
  31. 박정래, 이영실, 김보현, 강양호, 김인주, 김용기, 손석만. OLETF 쥐에서 산화스트레스가 IRS-1 degradation을 통한 혈관성 인슐린저항성의 유발. 대한당뇨병학회. 2007;31(1):22-32.
  32. Paolisso G. Giuglianoc D. Oxidative stress and insulin action: Is there a relationship? Diabetologia. 1996;39:357-363. https://doi.org/10.1007/BF00418354
  33. Kiuchi K, Nejima J, Takano T, Ohta M, Hashmoto M. Incresed serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in type 2 diabetic patients. Heart. 2001;85:87-91. https://doi.org/10.1136/heart.85.1.87
  34. Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med. 1991;10(5):339-352. https://doi.org/10.1016/0891-5849(91)90040-A
  35. McLennan SV, Heffernan S, Wright L, Rae C, Fisher E, Yue DK et al. Changes in hepatic glutathione metabolism in diabetes. Diabetes. 1991;40(3);344-348. https://doi.org/10.2337/diabetes.40.3.344
  36. 王作成. 中醫中藥對糖尿病自由基代謝的影響. 天津中醫. 1995;12(5):43-44.
  37. 우원홍, 이승연, 김용수, 백은경, 정영목, 정우열. '活血化瘀'의 동서의학적 이해. 동의생리병리학회지. 2001;15(6):833-836.
  38. 黃泰康主編. 內分泌代射病中醫治療學. 北京: 中國醫藥科技出版社; 2002, p. 459.
  39. 陳端生. 活血化瘀爲主治療糖尿病28例臨床觀察. 福建中醫藥. 1995;26(5):10.
  40. 李振中. 血瘀與消渴芻議. 遼寧中醫雜志. 1990;7:11.
  41. 李賽美, 林培政. 糖尿病中醫"濕熱致消"硏究近況.浙江中醫杂志. 2006;4:242-245.
  42. 劉敏, 李静, 朱章志, 戴蓮儀. 消渴病濕熱證證治 探析. 新中醫. 2005;37(9):3-5.
  43. Duke EJ, Joyce P, Ryan JP. Characterization of alternative molecular forms of xanthine oxidase in the mouse. Biochem J. 1973;131(2) :187-190.
  44. Sakamoto Y, Higashi T. Glutathione. Japan: Scientific societies; 1989, p. 5.
  45. 손장락. 활성산소와 항산화제. 서울: 바이오메디컬; 2004, p. 66.
  46. Ling H, Heimberg A, Foriers F, Schuit D, Pipeleers. Differential expression of rat insulin I and II messenger ribonucleic acid after prolonged exposure of islet {beta}-cells to elevated glucose levels. Endocrinology. 1998; 139:491-495. https://doi.org/10.1210/en.139.2.491
  47. Iynedijian PB, Gjinovei A, Renold AE. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem. 1988; 263(2):740-744.
  48. Fridolf T, Ahren B. GLP-1(7-36) amide stimulated insulin secretion in rat islets: studies on the mode of action. Diabetes Res. 1991;16(4):185-191.
  49. Egan JM, Bulotta A, Hui H, Perfetti R. GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells. Diabetes Metab Res Rev. 2003;19(2):115-123. https://doi.org/10.1002/dmrr.357
  50. Meier JJ, Nauck MA, Pott A, Heinze K, Goetze O, Bulut K, Schmidt WE, Gallwitz B, Holst JJ. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology. 2006;130(1):44-54. https://doi.org/10.1053/j.gastro.2005.10.004
  51. Zhang BB, Moller DE. New approaches in the treatment of type 2 diabetes. Curr opin chem biol. 2000;4:461-467. https://doi.org/10.1016/S1367-5931(00)00103-4