손상된 핵산의 구조와 분자동력학적 특성

Conformational and Molecular Dynamical Properties of Damaged DNA

  • 투고 : 2010.01.07
  • 심사 : 2010.01.12
  • 발행 : 2010.02.28

초록

Some of the benzopyrene (BP)-DNA adduct are known to build intercalated motif between flanking base pairs in damaged DNA depending on the structural condition. The size of benzopyrene itself is definitely not comparable with any of the DNA bases and thus the question whether the lesion of some base pair by insertion of benzopyrene can happen with or without a dramatic distortion of the helical structure is a highly interesting theme. In this work we used a molecular dynamics simulation based on the theory of molecular mechanics. The specific consequences about the structural properties of the intercalated structures and benzopyrene motif in minor groove of the double helix are deduced after 5 ns simulation time.

키워드

과제정보

연구 과제 주관 기관 : 충남대학교

참고문헌

  1. Conney, A. H. : Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res. 42, 4875 (1982).
  2. Weinstein, I. B., Jeffrey, A. M., Jennette, K. W., Blobstein, S. H., Harvey, R. G. and Harris, C. : Benzo[a]pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science 193, 592 (1976). https://doi.org/10.1126/science.959820
  3. Koreeda, M., Moore, P. D., Wislocki, P. G., Levin, W., Yagi, H. and Jerina, D. M. : Binding of benzo[a]-pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. Science 199, 778 (1978). https://doi.org/10.1126/science.622566
  4. Weisenberger, D. J. and Romano, L. J. : Cytosine methylation in a CpG sequence leads to enhanced reactivity with benzo[a]pyrene diol epoxides that lorrelates with a conformational change. J. Biol. Chem. 274, 23948 (1999). https://doi.org/10.1074/jbc.274.34.23948
  5. Zhang, Na., Chin, L., Huang, X., Kolbanovskiy, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E. and Patel, D. J. : Conformational switch in a carcinogen-DNA adduct. J. Mol. Biol. 346, 951 (2005). https://doi.org/10.1016/j.jmb.2004.12.027
  6. Case, D. A., Pearlman, D. A., Caldwell, J. W., Cheatham III, T. E., Wang, J., Ross, W. S., Simmerling, C. L., Darden, T. A., Merz, K. M., Stanton, R. V., Cheng, A. L., Vincent, J. J., Crowley, M., Tsui, V., Gohlke, H., Radmer, R. J., Duan, Y., Pitera, J., Massova, I., Seibel, G. L., Singh, U. C., Weiner, P. K. and Kollman, P. A. : AMBER7, University of California, San Francisco (2002).
  7. Pople, J. A. : Gaussian 03, IA32L-G03RevC.01. 3. Apr. 2004. Gaussian, Inc., Wallingford CT (2004).
  8. Patterson, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. : UCSF Chimera - a visualization system for extraordinary research and analysis. J. Comput. Chem. 25(13), 1605 (2004). https://doi.org/10.1002/jcc.20084
  9. Gaiha, P. and Guha, S. K. : Adjacent vertices on a permutohedron. SIAM J. Appl. Math. 32, 323 (1977). https://doi.org/10.1137/0132025
  10. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. : Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983). https://doi.org/10.1063/1.445869