Molecular Dynamics Simulation of Intercalation of Benzopyrene Motif in DNA

핵산의 분자역학적 모의실험을 통한 벤조피렌 층상구조의 발현

  • Received : 2010.01.07
  • Accepted : 2010.01.12
  • Published : 2010.02.28

Abstract

Benzopyrene is known to be one of the most powerful carcinogens which can build intercalated motif between base pairs in damaged DNA. The dimension of benzopyrene itself is much bigger than any of the DNA bases and thus the question whether the lesion of some base pair by insertion of benzopyrene can happen with or without a dramatic distortion of the helical structure is a highly interesting theme. In this work we used a molecular mechanics simulation using AMBER program package to go into the conformational characteristics. The condition of the insertion process of the benzopyrene motif from minor groove of the starting structure between the base pairs in the internal area of double helix was investigated using the molecular dynamics simulation at elevated temperature.

Keywords

References

  1. Conney, A. H. : Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res. 42, 4875 (1982).
  2. Weinstein, I. B., Jeffrey, A. M., Jennette, K. W., Blobstein, S. H., Harvey, R. G. and Harris, C. : Benzo[a]pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science 193, 592 (1976). https://doi.org/10.1126/science.959820
  3. Koreeda, M., Moore, P. D., Wislocki, P. G., Levin, W., Yagi, H. and Jerina, D. M. : Binding of benzo[a]-pyrene 7,8-diol-9,10-epoxides to DNA, RNA, and protein of mouse skin occurs with high stereoselectivity. Science 199, 778 (1978). https://doi.org/10.1126/science.622566
  4. Weisenberger, D. J. and Romano, L. J. : Cytosine methylation in a CpG sequence leads to enhanced reactivity with benzo[a]pyrene diol epoxides that lorrelates with a conformational change. J. Biol. Chem. 274, 23948 (1999). https://doi.org/10.1074/jbc.274.34.23948
  5. Zhang, Na., Chin, L., Huang, X., Kolbanovskiy, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E. and Patel, D. J. : Conformational switch in a carcinogen-DNA adduct. J. Mol. Biol. 346, 951 (2005). https://doi.org/10.1016/j.jmb.2004.12.027
  6. Case, D. A., Pearlman, D. A., Caldwell, J. W., Cheatham III, T. E., Wang, J., Ross, W. S., Simmerling, C. L., Darden, T. A., Merz, K. M., Stanton, R. V., Cheng, A. L., Vincent, J. J., Crowley, M., Tsui, V., Gohlke, H., Radmer, R. J., Duan, Y., Pitera, J., Massova, I., Seibel, G. L., Singh, U. C., Weiner, P. K. and Kollman, P. A. : AMBER7, University of California, San Francisco (2002).
  7. Pople, J. A. : Gaussian 03, IA32L-G03RevC.01. 3. Apr. 2004. Gaussian, Inc., Wallingford CT (2004).
  8. Patterson, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. : UCSF Chimera - a visualization system for extraordinary research and analysis. J. Comput. Chem. 25(13), 1605 (2004). https://doi.org/10.1002/jcc.20084
  9. Gaiha, P. and Guha, S. K. : Adjacent vertices on a permutohedron. SIAM J. Appl. Math. 32, 323 (1977). https://doi.org/10.1137/0132025
  10. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. : Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983). https://doi.org/10.1063/1.445869