Analysis of Minisatellite 7 of SLC6A19 (SLC6A19-MS7) for the Relationship to Myocardial Infarction and Evolutional Level

SLC6A19 Minisatellites 7(SLC6A19-MS7)의 심근경색과의 관련성과 진화적 분석

  • 설소영 (동아대학교 자연과학대학 생명과학과) ;
  • 이상엽 (동아대학교 자연과학대학 생명과학과) ;
  • 염지훈 (동아대학교 자연과학대학 생명과학과) ;
  • 윤해순 (동아대학교 자연과학대학 생명과학과) ;
  • 선우양일 (동아대학교 자연과학대학 생명과학과)
  • Received : 2009.10.09
  • Accepted : 2009.12.07
  • Published : 2010.02.28

Abstract

SLC6A19 which reported as a neurotransmitter was composed of seven minisatellites. In previous our study, the minisatellites variants of SLC6A19-MS7 showed the susceptibility for hypertension. When this minisatellte sequences were analyzed using the bioinformatic tool, USF1 (upstream transcription factor 1) was found in this region as a putative transcription factor binding site. USF1 is binding with E-boxes which has a consensus sequence of CACGTG. USF1 is a ubiquitously expressed transcription factor and involved in the transcriptional control of many genes including the molecular pathogenesis of cardiovascular disease. Thus, we investigated that the putative functional relationship between the minisatellites variants and susceptibility for myocardial infarction. A case-control study was performed that compared genomic DNA from 400 controls and 225 cases with myocardial infarction. There were no significant differences observed in the overall allelic distribution of minisatellites between controls and cases, which indicates that this polymorphism is not responsible for myocardial infarction susceptibility. Hence, we analyzed the five different minisatellites alleles from this study and characterized 14 different repeats units (Unit1~Unit14). Then, we evaluated the DNA composition, phylogenic tree, and pairwise distances of its repeats. The variability of each repeats differed from 2.33% to 16%. The phylogenic trees for the four SLC6A19-MS7 minisatellites exhibited very different shapes in their braches and distances, and present most common 8 repeats allele was the longest 14 repeats allele. Therefore, this result may help to understand for the evolutional level of the length of minisatellites.

Keywords

References

  1. Venter, J. C., Adams, M. D., Mayers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. : The sequence of the human genome. Science 291(5507), 1304 (2001). https://doi.org/10.1126/science.1058040
  2. Chen, N. H., Reith, M. E. and Quick, M. W. : Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 447(5), 519 (2004). https://doi.org/10.1007/s00424-003-1064-5
  3. Engel, K., Zhou, M. and Wang, J. : Identification and characterization of a novel monoamine transporter in the human brain. J. Biol. Chem. 279(48), 50042 (2004). https://doi.org/10.1074/jbc.M407913200
  4. Takanaga, H., Mackenzie, B., Peng, J. B. and Hediger, M. A. : Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in Human Brain. Biochem Biophys Res Commun. 337(3), 892 (2005). https://doi.org/10.1016/j.bbrc.2005.09.128
  5. Gether, U., Andersen, P. H., Larsson, O. M. and Schousboe, A. : Neurotransmitter transporters: Molecular function of important drug targets. Trends Pharmacol Sci. 27(7), 375 (2006). https://doi.org/10.1016/j.tips.2006.05.003
  6. Carlsson, A. : Perspectives on the discovery of central monoaminergic neurotransmission. Annu. Rev. Neurosci. 10, 19 (1987). https://doi.org/10.1146/annurev.ne.10.030187.000315
  7. Hoglund, P. J., Adzic, D., Scicluna, S. J. lindblom, J. and Fredriksson, R. : The repertoire of solute carriers of family 6: Identification of new human and rodent genes. Biochem. Biophys. Res. Commun. 336(1), 175 (2005). https://doi.org/10.1016/j.bbrc.2005.08.048
  8. Broer, S. : The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int. 48(6-7), 559 (2006). https://doi.org/10.1016/j.neuint.2005.11.021
  9. Yoon, Y. H., Seol, S. Y., Heo, J., Chung, C. N., Park I. H. and Leem, S. H. : Analysis of VNTRs in the solute carrier family 6, member 18 (SLC6A18) gene and essential hypertencion. DNA Cell Biol. 27(10), 559 (2008). https://doi.org/10.1089/dna.2008.0755
  10. Leem, S. H., Kouprina, N., Grimwood, J., Kim, J. H., Mullokandov, M., Yoon, Y. H., Chae, J. Y., Morgan, J., Lucas, S., Richardson, P., Detter, C., Glavina, T., Rubin, E., Barrett, J. C. and Larionov, V. : Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements. Genome Res. 14(2), 239 (2004). https://doi.org/10.1101/gr.1929904
  11. Jeong, Y. H., Kim, M. C., Ahn, E. K., Seol, S. Y., Do, E. J., Choi, H. J., Chu, I. S., Kim, W. J., Kim, W. J., Sunwoo, Y. and Leem, S. H. : Rare Exonic Minisatellite Alleles in MUC2 Influence Susceptibility to Gastric Carcinoma. PLoS One. 2(11), e1163 (2007). https://doi.org/10.1371/journal.pone.0001163
  12. Jeffreys, A. J., Wilson, V. and Thein, S. L. : Hypervariable minisatellite regions in human DNA. Nature 314, 67 (1985). https://doi.org/10.1038/314067a0
  13. Krontiris, T. G., Devlin, B., Karp, D. D., Robert, N. J. and Risch, N. : An association between the risk of cancer and mutations in the HRAS1 minisatellite locus. N. Engl. J. Med. 329(8), 517 (1993). https://doi.org/10.1056/NEJM199308193290801
  14. Fiskerstrand, C. E., Lovejoy, E. A. and Quinn, J. P. : An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS Lett. 458, 171 (1999). https://doi.org/10.1016/S0014-5793(99)01150-3
  15. Seol, S. Y., Lee, S. Y., Kim, Y. D., Do, E.J., Kwon, J. A., Kim, S. I., Chu, I. S. and Leem, S. H. : Minisatellite polymorphisms of the SLC6A19: Susceptibility in Hypertension. Biochem. Biophys. Res. Commun. 374(4), 714 (2008). https://doi.org/10.1016/j.bbrc.2008.07.094
  16. Acelajado, M. C. and Oparil, S. : Hypertension in the elderly. Clin Geriatr Med. 25(3), 391 (2009). https://doi.org/10.1016/j.cger.2009.06.001
  17. Komulainen, K., Alanne, M., Auro, K., Kilpikari, R., Pajukanta, P., Saarela, J., Ellonen, P., Salminen, K., Kulathinal, S., Kuulasmaa, K., Silander, K., Salomaa, V., Perola, M. and Peltonen, L. : Risk alleles of USF1 gene predict cardiovascular disease of women in two prospective studies. PLoS One 2(5), e69 (2006).
  18. Birney, E., Andrews, T. D., Bevan, P., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cuff, J., Curwen, V., Cutts, T., Down, T., Eyras, E., Fernandez-Suarez, X. M., Gane, P., Gibbins, B., Gilbert, J., Hammond, M., Hotz, H. R., Iyer, V., Jekosch, K., Kahari, A., Kasprzyk, A., Keefe, D., Keenan, S., Lehvaslaiho, H., McVicker, G., Melsopp, C., Meidl, P., Mongin, E., Pettett, R., Potter, S., Proctor, G., Rae, M., Searle, S., Slater, G., Smedley, D., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Storey, R., Ureta-Vidal, A., Woodwark, K. C., Cameron, G., Durbin, R., Cox, A., Hubbard, T. and Clamp, M. : An overview of Ensembl. Genome Res. 14(5), 925 (2004). https://doi.org/10.1101/gr.1860604
  19. Kim, C. H., Ardayfio, P. and Kim, K. S. : An E-box Motif residing in the exon/intron 1 junction regulates both transcriotional activation and splicing of the human norepinephrine transporter gene. J. Biol. Chem. 276(27), 24797 (2001). https://doi.org/10.1074/jbc.M101279200
  20. Naukkarinen, J., Gentile, M., Soro-Paavonen, A., Saarela, J., Koistinen, H. A., Pajukanta, P., Taskinen, M. R. and Peltonen, L. USF1 and dyslipidemias: converging evidence for a functional intronic variant. Hum. Mol. Genet. 14(17), 2595 (2005). https://doi.org/10.1093/hmg/ddi294