Cytotoxic Effect of Chalcone Derivatives in MCF-7 Human Breast Cancer and HT-1080 Human Fibrosarcoma Cells

Chalcone 유도체들의 사람 유방암세포주 및 사람 섬유육종 세포에 대한 세포독성효과

  • Kang, You-Ra (College of Pharmacy and Department of Yeungnam University) ;
  • Park, Min-A (College of Pharmacy and Department of Yeungnam University) ;
  • Cho, Mi-Yeon (College of Pharmacy and Department of Yeungnam University) ;
  • Lee, Kyung-Hee (Food and Nutrition, Yeungnam University) ;
  • Kim, Jung-Ae (College of Pharmacy and Department of Yeungnam University)
  • Received : 2009.09.23
  • Accepted : 2009.12.10
  • Published : 2010.02.28

Abstract

Xanthohumol, a prenylated chalcone of the Hop plant (Humulus lupulus L.), has been reported to suppress tumor growth. 4-hydroxychalcone and isobavachalcone are chalcone derivatives and they have similar structure with xanthohumol. In the present study, we investigated the cytotoxic activities of chalcone and its derivatives, 4-hydroxychalcone, xanthohumol, and isobavachalcone, in MCF-7 and adriamycin resistant MCF-7 (MCF-7/ADR) breast cancer cells and HT-1080 fibrosarcoma cells. In a cell viability assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reagent, chalcone and 4-hydroxychalcone decreased cell viability in HT-1080 cells, but not in MCF-7 and MCF-7/ADR cells. Isobavachalcone showed similar cytotoxicity in HT-1080 cells, and only limited cytotoxicity in MCF-7 and MCF-7/ADR cells at very high concentration (50 ${\mu}M$). In contrast, xanthohumol showed concentration-dependent cytotoxicity in MCF-7, MCF-7/ADR, and HT-1080 cancer cells. Taken together, the structure-activity relationship of chalcone and its derivatives indicate that chalcones may be valuable cytotoxic compounds against selective cancer types.

Keywords

References

  1. De Mello, J. F., De Lima, O. G., De Albuquerque, M. M., Marini-Bettolo, G. B., Lyra, F. D. and Da Silva, E. C. : O and C prenylated chalcones with antineoplastic and antibiotic activities isolated from Lonchocarpus neuroscapha Benth. Revista Instituto de Antibioticos (Recife) 14, 39 (1974).
  2. Ramanathan, R., Tan, C. H. and Das, N. P. : Inhibitory effects of 2-hydroxychalcone and other flavonoids on human cancer cell proliferation. Int. J. Oncology 3, 115 (1993).
  3. Satomi, Y. : Inhibitory effects of 3'-methyl-3-hydroxy-chalcone on proliferation of human malignant tumour cells and on skin carcinogenesis. Int. J. Cancer. 55, 506 (1993). https://doi.org/10.1002/ijc.2910550330
  4. Yit, C. C. and Das, N. P. : Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation. Cancer Lett. 82, 65 (1994). https://doi.org/10.1016/0304-3835(94)90147-3
  5. De Vincenzo, R., Scambia, G., Benedetti Panici, P., Ranelletti, F. O., Bonanino, G., Ercoli Monache, A., Delle, F., Ferrari, F., Piantelli, M. and Mancuso, S. : Effect of synthetic and naturally occurring chalcones on ovarian cancer cell growth: structureactivity relationships. Anti-Cancer Drug Des. 10, 481 (1995).
  6. Colgate, E. C., Miranda, C. L., Stevens, J. F., Bray, T. M. and Ho, E. : Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett. 246, 201 (2007). https://doi.org/10.1016/j.canlet.2006.02.015
  7. Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. and Lin, C. N. : Synthesis and anti-inflammatory effect of chalcones and related compounds. Pharm. Res. 15, 39 (1998). https://doi.org/10.1023/A:1011940401754
  8. Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J., Yang, Y. H., Deinzer, M. L., Barnes, D. W. and Buhler, D. R. : Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 37, 271 (1999). https://doi.org/10.1016/S0278-6915(99)00019-8
  9. Delmulle, L., Bellahcène, A., Dhooge, W., Comhaire, F., Roelens, F., Huvaere, K., Heyerick, A., Castronovo, V. and De Keukeleire, D. : Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine. 13, 732 (2006). https://doi.org/10.1016/j.phymed.2006.01.001
  10. Pan, L., Becker, H. and Gerhäuser, C. : Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor and mitochondrial pathway. Mol. Nutr. Food Res. 49, 837 (2005). https://doi.org/10.1002/mnfr.200500065
  11. Gerhauser, C., Alt, A., Heiss, E., Gamal-Eldeen, A., Klimo, K., Knauft, J., Neumann, I., Scherf, H. R., Frank, N., Bartsch, H. and Becker, H. : Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 1, 959 (2002).
  12. Plazar, J., Zegura, B., Lah, T. T. and Filipic, M. : Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tertbutyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutat. Res. 632, 1 (2007). https://doi.org/10.1016/j.mrgentox.2007.03.013
  13. Barbara, V., Lara, D., Veerle Van, M., Herman, D., Denis De, K. and Marc, B. : Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int. J. Cancer. 117, 889 (2005). https://doi.org/10.1002/ijc.21249
  14. Monteghirfo, S., Tosetti, F., Ambrosini, C., Stigliani, S., Pozzi, S., Frassoni, F., Fassina, G., Soverini, S., Albini, A. and Ferrari, N. : Antileukemia effects of xanthohumol in Bcr/Abltransformed cells involve nuclear factor-kappaB and p53 modulation. Mol. Cancer Ther. 7, 2692 (2008). https://doi.org/10.1158/1535-7163.MCT-08-0132
  15. Albini, A., Dell'Eva, R., Vené, R., Ferrari, N., Buhler, D. R., Noonan, D. M. and Fassina, G. : Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NFkappaB and Akt as targets. FASEB J. 20, 527 (2006). https://doi.org/10.1096/fj.05-5128fje
  16. Babu, M. A., Shakya, N., Prathipati, P., Kaskhedikar, S. G. and Saxena, A. K. : Development of 3D-QSAR models for 5- Lipoxygenase antagonists: chalcones. Bioorg. Med. Chem. 10, 4035 (2003).
  17. Barfod, L., Kemp, K., Hansen, M. and Kharazmi, A. : Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines. Int. Immunopharmacol. 2, 545 (2002). https://doi.org/10.1016/S1567-5769(01)00202-8
  18. Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. and Khan, S. R. : Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J. Med. Chem. 46, 2813 (2003). https://doi.org/10.1021/jm030213+
  19. Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T. and Rennison, D. : Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett. 8, 1051 (1998). https://doi.org/10.1016/S0960-894X(98)00162-0
  20. Cheenpracha, S., Karalai, C., Ponglimanont, C., Subhadhirasakul, S. and Tewtrakul, S. : Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg. Med. Chem. 14(6), 1710 (2006). https://doi.org/10.1016/j.bmc.2005.10.019
  21. Seo, W. D., Kim, J. H., Kang, J. E., Ryu, H. W., Long, M. J. C., Lee, S. H., Yang, M. S. and Park, K. H. : Sulfonamide chalcone as a newaclass of a-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 15, 5514 (2005). https://doi.org/10.1016/j.bmcl.2005.08.087
  22. Karalee, J. J. T., Richard, A. A. and Donald, J. G. : A Hydroxychalcone Derived from Cinnamon Functions as a Mimetic for Insulin in 3T3-L1 Adipocytes. J. Am. Coll. Nutr. 20, 327 (2001). https://doi.org/10.1080/07315724.2001.10719053