레스베라트롤이 니페디핀의 약물동태에 미치는 영향

Effects of Resveratrol on the Pharmacokinetics of Nifedipine in Rats

  • 투고 : 2010.03.04
  • 심사 : 2010.06.10
  • 발행 : 2010.08.31

초록

The aim of this study was to investigate the effect of resveratrol on the pharmacokinetics of nifedipine in rats. The pharmacokinetic parameters of nifedipine were measured after the oral administration of nifenipine (6 mg/kg) in the presence or absence of resveratrol (0.5, 2.5 and 10 mg/kg, respectively). The effect of resveratrol on the P-glycoprotein (Pgp), CYP 3A4 activity was also evaluated. Resveratrol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 0.94 ${\mu}M$. In addition, resveratrol significantly enhanced the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. Compared to the control groups, the presence of 2.5 mg/kg and 10 mg/kg of resveratrol significantly (p<0.05, p<0.01) increased the area under the plasma concentrationtime curve (AUC) of nifedipine by 49~75%, and the peak concentration ($C_{max}$) of nifedipine by 48~66%. The absolute bioavailability (AB%) of nifedipine was significantly (p<0.05) increased by 22.9-34.8% compared to the control (19.8%). The terminal half-life ($T_{1/2}$) of nifedipine was significantly (p<0.05) increased compared to the control. While there was no significant change in the time to reach the peak plasma concentration ($T_{max}$) of nifedipine in the presence of resveratrol. It might be suggested that resveratrol altered disposition of nifedipine by inhibition of both the CYP3A and P-glycoprotein efflux pump in the small intestine of rats. In conclusion, the presence of resveratrol significantly enhanced the oral bioavailability of nifedipine, suggesting that concurrent use of resveratrol or resveratrol-containing dietary supplenment with nifedipine should require close monitoring for potential drug interation.

키워드

참고문헌

  1. Soleas, G. J., Diamandis, E. P. and Golberg, D. M. : Resveratrol: a molecule whose time has come? and gone? Clin. Biochem. 30, 91 (1997a). https://doi.org/10.1016/S0009-9120(96)00155-5
  2. Soleas, G. J., Diamandis, E. P. and Golberg, D. M. : Wine as a biological fluid: history, production, and role in disease prevention. J. Clin. Lab. Anal. 11, 287 (1997b). https://doi.org/10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4
  3. Constant, J. : Alcohol, ischemic heart disease, and the French paradox. Coronary Artery. Dis. 8, 645 (1997). https://doi.org/10.1097/00019501-199710000-00007
  4. Fauconneau, B., Waffo-Teguo, P., Huguet, F., et al. : Comparative study of radical scavenger and antioxidant properties of phenolic compounds from vitis vinifera cell cultures using in vitro tests. Life Sci. 61, 2103 (1997).
  5. Frankel, E. N., Waterhouse, A. L. and Kinsella, J. E. : Inhibition of human LDL oxidation by resveratrol. Lancet. 341, 1103 (1993).
  6. Bertelli, A. A. E., Giovanni, L., Stradi, R., et al. : Kinetics of trans- and cis-resveratrol (3,4',5-trihydroxystilbene) after red wine oral administration in rats. Int. J. Clin Pharmacol Res. 26, 77 (1996).
  7. Jang, M., Cai, L., Udeani, G. O., et al. : Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218 (1997). https://doi.org/10.1126/science.275.5297.218
  8. Guengerich, F. P. : Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res. 48, 2946 (1988).
  9. Chan, W. K. and Delucchi, A. B. : Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life Sci. 67, 3103 (2000). https://doi.org/10.1016/S0024-3205(00)00888-2
  10. Piver, B., Berthou, F., Dreano, Y., et al. : Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol. Lett. 125, 83 (2001). https://doi.org/10.1016/S0378-4274(01)00418-0
  11. Chang, T. K. H., Chen, J. and Yu, C. T. : In vitro inhibition of rat CYP1A1 and CYP1A2 by piceatannol, a hydroxylated metabolite of resveratrol. Drug Metab. Lett. 1, 13 (2007). https://doi.org/10.2174/187231207779814337
  12. Nabekura, T., Kamiyama, S. and Kitagawa, S. : Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem. Biophys. Res. Commun. 327, 866 (2005). https://doi.org/10.1016/j.bbrc.2004.12.081
  13. Walter, D. G., Gruchy, B. S., Renwick, A. G., et al. : The firstpass metabolism of nifedipine in man. Br. J. Clin. Pharmacol. 18, 951 (1984). https://doi.org/10.1111/j.1365-2125.1984.tb02569.x
  14. Raemsch, K. and Sommer, J. C. : Pharmacokinetics and metabolism of nifedipine. Hypertension. 5, 18 (1983).
  15. Henry, P. D. : Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am. J. Cardiol. 46, 1047 (1980). https://doi.org/10.1016/0002-9149(80)90366-5
  16. Sorkin, E. M., Clissold, S. P. and Brogden, R. N. : Nifedipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs. 30, 182 (1985). https://doi.org/10.2165/00003495-198530030-00002
  17. Guengerich, F. P., Brian, W. R. and Iwasaki, M. : Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 3A4. J. Med. Chem. 4, 1838 (1991).
  18. Iribarne, C., Dréano, L. G., Bardou, J. F., et al. : Interaction of methadone with substrates of human hepatic cytochrome P450 3A4. Toxicology 117, 13 (1997). https://doi.org/10.1016/S0300-483X(96)03549-4
  19. Watkins, P. B., Wrighton, S. A., Schuetz, E. G., et al. : Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J Clin Invest. 80, 1029 (1987). https://doi.org/10.1172/JCI113156
  20. Kolars, J. C., Schmiedlin-Ren, P., Dobbins, 3rd W. O., et al. : Heterogeneity of cytochrome P450IIIA expression in rat gut epithelia. Gastroenterology 102, 1186 (1992). https://doi.org/10.1016/0016-5085(92)90756-O
  21. Gottesman, M. M. and Pastan, I. : Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62, 385 (1993). https://doi.org/10.1146/annurev.bi.62.070193.002125
  22. Gan, S. L., Moseley, M. A., Khosla, B., et al. : CYP3A-Like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells: interaction between the two biochemical barriers to intestinal transport. Drug Metab. Dispos. 24, 344 (1996).
  23. Watkins, P. B. : The barrier function of CYP3A4 and Pglycoprotein in the small bowel. Adv. Drug Deliv. Rev. 27, 161 (1996).
  24. Wacher, V. H., Silverman, J. A., Zhang, Y., et al. : Role of Pglycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci. 87, 1322 (1998). https://doi.org/10.1021/js980082d
  25. Ito, K., Kusuhara, H. and Sugiyama, Y. : Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption theoretical approach. Pharm. Res. 16, 225 (1999). https://doi.org/10.1023/A:1018872207437
  26. Chaudhary, P. M. and Robinson, I. B. : Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 66, 85 (1991). https://doi.org/10.1016/0092-8674(91)90141-K
  27. Van Asperen, J., Van Tellingen, O., Sparreboom, A., et al. : Enhanced oral bilavailability of diltiazem in mice treated with the p-glycoprotein blocker. Br. J. Cancer. 76, 1181 (1997). https://doi.org/10.1038/bjc.1997.530
  28. Biedler, J. L. and Riehm, H. : Cellular resistance to actinomycin D in Chinese hamster cells in vitro: crossresistance, radioautographic, and cytogenetic studies. Cancer Res. 30, 1174 (1970).
  29. Ford, J. M. : Modulators of multidrug resistance preclinical studies. Hematol. Oncol. Clin. N. Am. 9, 337 (1995).
  30. Fruehauf, J. P. and Manetta, A. : Use of extreme drug resistance assay to evaluate mechanisms of resistance in ovarian cancer: Taxol resistance and MDR1 expression. Contrib. Gynecol. Obstet. 19, 39 (1994).
  31. Lee, J. K. and Choi, J. S. : Effect of morim on the pharmacokinetics of nifedipine in rats. Yakhak Hoeji 51, 169 (2007).
  32. Na, J. H. and Choi, J. S. : Effect of naringin on the pharmacokinetics of nifedipine in rats. J. Kor. Pharm. Sci. 35, 101 (2005).
  33. Han, H. K., Lee, I. K. and Choi, J. S. : Pharmacokinetic interaction between nifedipine and quercetin in rabbits. J. Kor. Pharm. Sci. 34, 283 (2004).
  34. Hong, S. P., Choi, D. H. and Choi, J. S. : Effects of resveratrol on the pharmacokinetics of diltiazem and its major metabolite, desacetyldiltiazem, in rats. Cardiovascular. 26, 269 (2008). https://doi.org/10.1111/j.1755-5922.2008.00060.x
  35. Choi, J. S., Choi, B. C. and Kang, K. W. : Effect of resveratrol on the pharmacokinetics of oral and intravenous nicardipine in rats: possible role of P-glycoprotein inhibition by resveratrol. Pharmazie. 64, 49 (2009).
  36. Grundy, J. S., Kherani, R. and Foster, R. T. : Sensitive highperformance liquid chromatographic assay for nifedipine in human plasma utilizing ultraviolet detection. J. Chromatogr B. Biomed. Appl. 654, 146 (1994). https://doi.org/10.1016/0378-4347(93)E0449-Z
  37. Crespi, C. L., Miller, V. P. and Penman, B. W. : Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188 (1997). https://doi.org/10.1006/abio.1997.2145
  38. Rocci, M. L. and Jusko, W. J. : LAGRAN program for area and moments in pharmacokinetic analysis. Computer Programs in Biomedicine. 16, 203 (1983). https://doi.org/10.1016/0010-468X(83)90082-X