Comparisons of Ginsenosides and Anti-inflammatory Effects of White Ginseng and Puffed Red Ginseng

인삼과 팽화홍삼의 Ginsenoside 함량 및 항염효과 비교

  • Received : 2010.07.16
  • Accepted : 2010.08.13
  • Published : 2010.08.31

Abstract

In this study, the ginsenoside contents and anti-inflammatory effects of white ginseng (WG) and puffed red ginseng (PRG) were compared. The contents of Rb1, Rg5 and Rk1 were significantly higher in PRG than in WG, whereas the contents of Rg1 and Rb2 were decreased in PRG. The levels of NO production and iNOS expression were suppressed in LPS-stimulated cells by treatment with WG and PRG. Further, the production of cytokines (TNF-$\alpha$ and INF-$\gamma$) and inflammatory proteins (NF-${\kappa}B$ and COX-2) was decreased in cells upon treatment with any of the ginsenosides. The high NO inhibitory activity and cytokine production of PRG is caused by differences in the composition of ginsenosides produced.

인삼과 팽화홍삼은 인삼의 가공방법에 따라 구분되어지며, 가공처리과정중 인삼의 효능을 나타내는 사포닌 함량의 변화가 생긴다. 본 연구에서는 인삼과 팽화홍삼을 이용하여 마우스 대식세포인 RAW 264.7세포에서 LPS에 의한 염증에 대한 항염 효과와 그 기전을 규명하고자 하였다. 본 연구를 통해서 인삼과 팽화홍삼 모두 LPS에 의한 NO의 생성을 억제시키는 것을 확인하였으며, TNF-$\alpha$ 및 INF-$\gamma$의 생성 또한 억제시키는 것을 알 수 있었다. 인삼과 팽화홍삼 모두 COX-2의 발현 및 LPS에 의한 $I{\kappa}B$의 인산화를 억제시킴으로써 NF-${\kappa}B$의 활성을 억제시키는 것임을 알 수 있었으나 인삼에 비하여 팽화홍삼의 항염 효과가 더욱 높았다. 그러므로 팽화홍삼이 인삼에 비하여 NO의 생성을 더 효과적으로 억제시키는 것은 팽화가공을 통하여 특정 진세노사이드($Rb_1,\;Rg_5+Rk_1$)의 증가에 의한 것으로 추정된다.

Keywords

References

  1. An YE, Cho JG, Baik NI, Choi SW, Hur NY, Park SJ, Kim BY, Baik MY. 2010. Isolation of 20(S)-Ginsenoside Rg3 and Rg5 from the puffed red ginseng. Food Enginerring progress 14(2):159-165
  2. Baeuerle PA. 1998. IkappaB-NF-kappaB structures: at the interface of inflammation control. Cell 95:729-731 https://doi.org/10.1016/S0092-8674(00)81694-3
  3. Cho JY, Kim AR, Yoo ES, Baik KU, Park MH. 2002. Ginsenosides from Panax ginseng differentially regulate lymphocyte proliferation. Planta Med 68:497-500 https://doi.org/10.1055/s-2002-32556
  4. Choi JH, Kim DH, Sung HS, Kim WJ, Oh SK. 1982. Kinetic studies on the thermal degradation of ginsenosided in ginseng extract. Korea J Food Sci Technol 14(3):197-202
  5. Han CK, Hong HD, Kim YC, Kim SS, Sim GS. 2007. Effect of puffing on quality characteristics of red gginseng tail root. J. Ginseng Res. 31(3):147-153 https://doi.org/10.5142/JGR.2007.31.3.147
  6. Hyun MS, Hur JM, Shin YS, Song BJ, Mun YJ, Woo WH. 2009. Comparison study of white ginseng, red ginseng, and fermented red ginseng on the protective effect of LPSinduced inflammation in RAW 264.7 cells. J. Appl. Chem. 52(1):21-27 https://doi.org/10.3839/jabc.2009.004
  7. Jang SK, Kim JH, Chung YS, Ahn DC, Kang MJ, Lee DG, Kim SH. 1994. An Experimental Study on the Effect of Immunopotential and the Anticancer Effect of Red Ginseng Extract. J Ginseng Res 18:151-159
  8. Karin M, Ben-Neriah Y. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621-663 https://doi.org/10.1146/annurev.immunol.18.1.621
  9. Kim ST, Jang JH, Kyun JH, Moon KD. 2009. Changes in the chemical components of red and white ginseng after pugging. The Korean Society of Food Preservation 16(3):355-361
  10. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, Min BI, Hong MC, Kim SY, Bae H. 2004. Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol 4:235-244 https://doi.org/10.1016/j.intimp.2003.12.007
  11. Lee WM, Kim SD, Kim, KS, Song YB, Kwak YS, Cho JY, Park HJ, Oh JW, Rhee MH. 2006. Protopanaxadiol modulates LPS-induced inflammatory activity in murine macrophage RAW264.7 cells. J Ginseng Res 30:181-187 https://doi.org/10.5142/JGR.2006.30.4.181
  12. Mu MM, Chakravortty D, Sugiyama T, Koide N, Takahashi K, Mori I, Yoshida T, Yokochi T. 2001. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J Endotoxin Res 7:431-438
  13. Posadas I, Terencio MC, Guillen I, Ferrandiz ML, Coloma J, Paya M, Alcaraz MJ. 2000. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch Pharmacol 361:98-106 https://doi.org/10.1007/s002109900150
  14. Seybold VS, Jia YP, Abrahams LG. 2003. Cyclo-oxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain 105:47-55 https://doi.org/10.1016/S0304-3959(03)00254-9
  15. Shin JY, Choi EH, Wee JJ. 2001. New methods for separation of crude ginseng saponins. Korean J Food Sci Technol 33(2): 166-172
  16. Sohn HJ, Jang JG, Lee SK, Kim JG, Lee YW. 1993. Study on extraction methods of saponin in ginseng products. Korean J Ginseng Sci 8(1):32-37
  17. Stokes KY, Cooper D, Tailor A, Granger DN. 2002. Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic Biol Med 33:1026-1036 https://doi.org/10.1016/S0891-5849(02)01015-8
  18. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: downregulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480-481:243-268
  19. Yang SJ, Woo KS, Yoo JS, Kang TS, Noh YH, Lee J, Jeong HS. 2006. Changes of Korean ginseng components with high temperature and preassure treatment. Korean J Food Sci Technol 38(4):521-525
  20. Yun HY, Dawson VL, Dawson TM. 1996. Neurobiology of nitric oxide. Crit Rev Neurobiol 10:291-316 https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20